We theoretically find that a bi-layer structure composed of two kinds of dispersive metamaterials can possess an asymmetric reflection spectrum due to Fano-type interference between a discrete reflection resonance and a broadband strong reflection. The discrete reflection resonance appears at the frequency around which the dispersive permeability is near to zero at oblique incidence. Based on analytical and numerical analysis, the asymmetric factor in the Fano-type reflection is found to be linked with the angle of incidence.
2. Miroshnichenko, A. E., S. Flach, and Y. S. Kivshar, "Fano resonances in nanoscale structures," Rev. Mod. Phys., Vol. 82, 2257-2298, 2010.
doi:10.1103/RevModPhys.82.2257
3. Kobayashi , K., H. Aikawa, S. Katsumoto, and Y. Iye, "Mesoscopic Fano effect in a quantum dot embedded in an Aharonov-Bohm ring," Phys. Rev. B, Vol. 68, 235304, 2003.
doi:10.1103/PhysRevB.68.235304
4. Vassilios , V. and M. P. Hariton, "Fano resonance and persistent current in mesoscopic open rings: Influence of coupling and Aharonov-Bohm flux," Phys. Rev. B, Vol. 74, 235323, 2006.
doi:10.1103/PhysRevB.74.235323
5. Xiong , Y. J. and X. T. Liang, "Fano resonance and persistent current of a quantum ring," Phys. Lett. A, Vol. 330, 307-332, 2004.
doi:10.1016/j.physleta.2004.08.009
6. Fan, S. H., "Sharp asymmetric line shapes in side-coupled waveguide-cavity systems," Appl. Phys. Lett., Vol. 80, 908-910, 2002.
doi:10.1063/1.1448174
7. Rybin , M. V. , A. B. Khanikaev, M. Inoue, A. K. Samusev, M. J. Steel, G. Yushin, and M. F. Limonov, "Bragg scattering induces Fano resonance in photonic crystals," Photonics and Nanostructures --- Fundamentals and Applications, Vol. 8, 86-93, 2010.
doi:10.1016/j.photonics.2009.07.003
8. Ruan, Z. and S. Fan, "Temporal coupled-mode theory for Fano resonance in light scattering by a single obstacle," J. Phys. Chem. C, Vol. 114, 7324-7329, 2009.
doi:10.1021/jp9089722
9. Chua, S. L., Y. D. Chong, A. D. Stone, M. Solja, and B. A. Jorge, "Low-threshold lasing action in photonic crystal slabs enabled by Fano resonances," Opt. Express, Vol. 19, 1540-1562, 2011.
10. Song , J. F. , R. P. Zaccaria, M. B. Yu, and X. W. Sun, "Tunable Fano resonance in photonic crystal slabs," Opt. Express, Vol. 14, 8812-8826, 2006.
doi:10.1364/OE.14.008812
11. Rybin , M. V., A. B. Khanikaev, M. Inoue, K. B. Samusev, M. J. Steel, G. Yushin, and M. F. Limonov, "Fano resonance between Mie and Bragg scattering in photonic crystals," Phys. Rev. Lett., Vol. 103, 023901, 2009.
doi:10.1103/PhysRevLett.103.023901
12. Hao, F. , Y. Sonnefraud, P. van Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, "Symmetry breaking in plasmonic nanocavities: Subradiant LSPR sensing and a tunable Fano resonance," Nano Lett., Vol. 8, 3983-3988, 2008.
doi:10.1021/nl802509r
13. Luk'yanchuk, B., I. Z. Nikolay, A. M. Stefan, J. H. Naomi, N. Peter, G. Harald, and T. C. Chong, "The Fano resonance in plasmonic nanostructures and metamaterials," Nature Materials, Vol. 9, 707-715, 2010.
doi:10.1038/nmat2810
14. Liu , N. , T. Weiss, M. Mesch, and L. Langguth, "Planar metama-terial analogue of electromagnetically induced transparency for plasmonic sensing," Nano Lett., Vol. 10, 1103-1107, 2010.
doi:10.1021/nl902621d
15. Menzel , C., C. Helgert, C. Rockstuhl, E. Kley, A. Tnnermann, T. Pertsch, and F. Lederer, "Asymetric transmission of linearly polarized light at optical metamaterials," Phys. Rev. Lett., Vol. 104, 253902, 2010.
doi:10.1103/PhysRevLett.104.253902
16. Pendry, J. B. , A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Phys. Rev. Lett., Vol. 76, 4773-4776, 1996.
doi:10.1103/PhysRevLett.76.4773
17. Zhang, , S., , W. J. Fan, B. K. Minhas, A. Frauenglass, K. J. Malloy, and S. R. J. Brueck, "Midinfrared resonant magnetic nanostructures exhibiting a negative permeability," Phys. Rev. Lett., Vol. 94, 037402, 2005.
doi:10.1103/PhysRevLett.94.037402
18. Moerland , R. J., N. F. van Hulst, H. Gersen, and L. Kuipers, "Probing the negative permittivity perfect lens at optical frequencies using near-¯eld optics and single moleculedetection," Opt. Express, Vol. 13, 1604-1614, 2005.
doi:10.1364/OPEX.13.001604
19. Yen, T. J. , W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, "Terahertz magnetic response from artificial materials," Science, Vol. 303, 1494-1496, 2004.
doi:10.1126/science.1094025
20. Alu , A. and N. Engheta, "Pairing an epsilon-negative slab with a mu-negative slab: Resonance, tunneling and transparency," IEEE Trans. Antennas Propagat., Vol. 51, 2558-2571, 2003.
doi:10.1109/TAP.2003.817553
21. Lin , W. H. , C. J. Wu, T. J. Yang, and S. J. Chang, "Analysis of dependence of resonant tunneling on static positive parameters in a single-negative bilayer," Progress In Electromagnetics Research, Vol. 118, 151-165, 2011.
doi:10.2528/PIER11040202
22. Alu, A., M. G. Silveirinha, A. Salandrino, and N. Engheta, "Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern," Phys. Rev. B, Vol. 75, 155410, 2007.
doi:10.1103/PhysRevB.75.155410
23. Yariv, A. and P. Yeh, Optical Waves in Crystals, Wiley, New York, 1984.