Vol. 27

Latest Volume
All Volumes
All Issues

Tunable Multi-Channel Filtering Using 1-D Photonic Quantum Well Structures

By Bhuvneshwer Suthar and Anami Bhargava
Progress In Electromagnetics Research Letters, Vol. 27, 43-51, 2011


In the present study, we show that it is possible to achieve multi-channel filters in one-dimensional photonic crystals using photonic quantum well structures. The photonic quantum well structure consists of different 1-D photonic structures. We use (AB)8/Cn/(BA)8 structure, where A, B and C are different materials. The number of defect layers (C) can be utilized to tune the multi-channel filtering. The filter range can be tuned for desired wavelength with the change in angle of incidence for multi-channel filtering.


Bhuvneshwer Suthar and Anami Bhargava, "Tunable Multi-Channel Filtering Using 1-D Photonic Quantum Well Structures," Progress In Electromagnetics Research Letters, Vol. 27, 43-51, 2011.


    1. Yablonovitch , E., "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett., Vol. 58, 2059-2062, 1987.

    2. John, S., "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett., Vol. 58, 2486-2489, 1987.

    3. Dowling , J. P., "Mirror on the wall: You're omnidirectional after all?," Science, Vol. 282, 1841-1843, 1998.

    4. Yablonovitch, , E., "Engineered omnidirectional external-reflectivity spectra from one-dimensional layered interference filters," Optics Letters, Vol. 23, 1648-1649, 1998.

    5. Chigrin , D. N. , A. V. Lavrinenko, D. A. Yarotsky, and S. V. Gaponenko, "Observation of total omnidirectional reflection from a one-dimensional dielectric lattice," Appl. Phys. A: Mater. Sci. Process., Vol. 68, 25-28, 1999.

    6. Fink, Y., J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopou-los, and E. L. Thomas, "A dielectric omnidirectional reflector," Science, Vol. 282, 1679-1682, 1998.

    7. Lusk , D., I. Abdulhalim, and F. Placido, "Omnidirectional reflection from Fibonacci quasi-periodic one-dimensional photonic crystal," Opt. Commun., Vol. 198, 273-279, 2001.

    8. Ibanescu, M., Y. Fink, S. Fan, E. L. Thomas, and J. D. Joannopoulos, "An all-dielectric coaxial waveguide," Science, Vol. 289, 415-418, 2000.

    9. Srivastava , S. K. and S. P. Ojha, "Omnidirectional reflection bands in one-dimensional photonic crystal structure using fluorescence films," Progress In Electromagnetics Research, Vol. 74, 181-194, 2007.

    10. Srivastava, R., S. Pati, and S. P. Ojha, "Enhancement of omnidirectional reflection in photonic crystal heterostructures," Progress In Electromagnetics Research B, Vol. 1, 197-208, 2008.

    11. Bhargava , A. and B. Suthar, "Localized modes in chalcogenide photonic multilayers with As-S-Se defect layer," Chalcogenide Letters, Vol. 6, No. 10, 529-533, 2009.

    12. Villar, I. D., I. R. Matias, F. J. Arregui, and R. O. Claus, "Analysis of one-dimensional photonic band gap structures with a liquid crystal defect towards development of fiber-optic tunable wavelength filters," Optics Express, Vol. 11, 430-436, 2003.

    13. Zhang, Y. and B. Y. Gu, "Aperiodic photonic quantum-well structures for multiple channeled filtering at arbitrary preassigned frequencies," Optics Express, Vol. 12, 5910-5915, 2004.

    14. Xiao, F., B. Juswardy, and K. Alameh, "Tunable photonic microwave filters based on opto-VLSI processors," IEEE Photonics Technology Letters, Vol. 21, 751-753, 2009.

    15. Yang, W. X. , J. M. Hou, and R. K. Lee, "Ultraslow bright and dark solitons in semiconductor quantum wells," Phys. Rev. A, Vol. 77, (033838)1-7, 2008.

    16. Christmann, G., C. Coulson, J. J. Baumberg, N. T. Pelekanos, Z. Hatzopoulos, S. I. Tsintzos, and P. G. Savvidis, "Control of polariton scattering in resonant-tunneling double-quantum-well semiconductor microcavities," Phys. Rev. B, Vol. 82, (113308)1-4, 2010.

    17. Schindler , C. and R. Zimmermann, "Analysis of the excitonexciton interaction in semiconductor quantum wells," Phys. Rev. B, Vol. 78, 045313, 2008.

    18. Politano, A. and G. Chiarello, "Collective electronic excitations in systems exhibiting quantum well states," Surf. Rev. Lett., Vol. 16, 171-190, 2009.

    19. Politano, A. and G. Chiarello, "Enhancement of hydrolysis in alkali ultrathin layers on metal substrates in the presence of electron confinement," Chem. Phys. Lett., Vol. 494, 84-87, 2010.

    20. Politano, A. , R. G. Agostino, E. Colavita, V. Formoso, and G. Chiarello, "Purely quadratic dispersion of surface plasmon in Ag/Ni(111): The in°uence of electron confinement," Phys. Status Solidi Rapid Res. Lett. (RRL), Vol. 2, 86-88, 2008.

    21. Zhang, C. , F. Qiao, J. Wan, J. Zi, and , "Enlargement of nontransmission frequency range in photonic crystals by using multiple heterostructures," J. Appl. Phys., Vol. 87, 3174-3176, 2000.

    22. Qiao, F. , C. Zhang, J. Wan, and J. Zi, "Photonic quantum-well structures: Multiple channeled filtering phenomena," Appl. Phys. Lett., Vol. 77, 3698-3700, 2000.

    23. Xiang, Y., X. Dai, S. Wen, and D. Fan, "Omnidirectional and multiple-channeled high-quality filters of photonic heterostructures containing single-negative materials," J. Opt. Soc. Am. A, Vol. 24, A28-A32, 2007.

    24. Chen , Y. H., "Frequency response of resonance modes in heterostructures composed of single-negative materials," J. Opt. Soc. Am. B, Vol. 25, 1794-1799, 2008.

    25. Yeh, P., Optical Waves in Layered Media, John Wiley and Sons, New York , 1988.

    26. Born , M. and E. Wolf, Principle of Optics, 4th Ed., Pergamon, Oxford, 1970.