Vol. 27

Latest Volume
All Volumes
All Issues
2011-11-05

Applications of a Three-Dimensional FDTD Method with Weakly Conditional Stability to the Analysis of Microstrip Filters with Fine Scale Structures

By Jing Lan, Yang Yang, and Jing Yi Dai
Progress In Electromagnetics Research Letters, Vol. 27, 101-115, 2011
doi:10.2528/PIERL11082213

Abstract

In three-dimensional space, the hybrid implicit-explicit finite-difference time-domain (HIE-FDTD) method is weakly conditionally stable, only determined by two space-discretizations, which is very useful for problems with fine structures in one direction. Its numerical dispersion errors with nonuniform cells are discussed and compared in this paper. To enlarge the applicable field of the HIE-FDTD method to open space, the absorbing boundary conditions (ABCs) for this method are also introduced and applied. Two microstrip filters with fine scale structures in one direction are solved by the HIE-FDTD method. Conventional FDTD method and alternating-direction implicit FDTD (ADI-FDTD) method are also used for comparing. Results analyzed by the HIE-FDTD method agree well with those from conventional FDTD, and the required central process unit (CPU) time is much less than that of the ADI-FDTD method.

Citation


Jing Lan, Yang Yang, and Jing Yi Dai, "Applications of a Three-Dimensional FDTD Method with Weakly Conditional Stability to the Analysis of Microstrip Filters with Fine Scale Structures," Progress In Electromagnetics Research Letters, Vol. 27, 101-115, 2011.
doi:10.2528/PIERL11082213
http://test.jpier.org/PIERL/pier.php?paper=11082213

References


    1. Taflove, A., Computational Electrodynamics: The Finite-di®erence Time-domain Method, Artech House, Norwood, MA, 1996.

    2. Namiki, T., "A new FDTD algorithm based on alternating direction implicit method," IEEE Trans. Microwave Theory Tech., Vol. 47, 2003-2007, 1999.
    doi:10.1109/22.795075

    3. Garcia, , S. G. , T. W. Lee, and S. C. Hagness, "On the accuracy of the ADI-FDTD method," IEEE Antennas Wireless Propagat. Lett., Vol. 1, 31-34, 2002.
    doi:10.1109/LAWP.2002.802583

    4. Heh, , D. Y. and E. L. Tan, "Unified efficient fundamental ADI-FDTD schemes for lossy media," Progress In Electromagnetics Research B, Vol. 32, 217-242, 2011.
    doi:10.2528/PIERB11051801

    5. Yang, Y., Z. H. Fan, D. Z. Ding, and S. B. Liu, "Extend two-step preconditioning technique for the Crank-Nicolson finite-difference time-domain method to analyze the 3D microwave circuits," International Journal of RF and Microwave Computer-aided Engineering, Vol. 19, No. 4, 460-469, 2009.
    doi:10.1002/mmce.20369

    6. Chen, J. and J. Wang, "Comparison between HIE-FDTD method and ADI-FDTD method," Microwave Opt. Technol. Lett., Vol. 49, 1001-1005, 2007.
    doi:10.1002/mop.22340

    7. Chen , J. , J. Wang, and C. Tian, "Three-dimensional hybrid implicit explicit finite-difference time-domain method in the cylindrical coordinate system," IEEE Trans. Antennas Propagat., Vol. 3, 1254-1261, 2009.

    8. Mur, G., "Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagnetic field equations," IEEE Trans. Electromagn. Compat., Vol. 23, No. 4, 377-382, 1981.
    doi:10.1109/TEMC.1981.303970

    9. Xiao, F., X. H. Tang, and L. Wang, "Stability and numerical dispersion analysis of a 3D hybrid implicit-explicit FDTD method," IEEE Trans. Antennas Propagat., Vol. 56, 3346-3350, 2008.
    doi:10.1109/TAP.2008.929528

    10. Fu, W. M. and E. L. Tan, "Stability and dispersion analysis for ADI-FDTD method in lossy media," IEEE Trans. Antennas Propagat., Vol. 55, No. 4, 1095-1102, 2007.
    doi:10.1109/TAP.2007.893378

    11. Gedney , S. D., "An anisotropic perfectly matched layer absorbing medium for the truncation of FDTD lattices," IEEE Trans. Antennas and Propagat., Vol. 44, 1630-1639, 1996.
    doi:10.1109/8.546249

    12. Yuan, W. and E. P. Li, "Numerical dispersion and impedance analysis for 3D perfectly matched layers used for truncation of the FDTD computations," Progress In Electromagnetics Research, Vol. 47, 193-212, 2004.
    doi:10.2528/PIER03121002

    13. Shreim, A. M. and M. F. Hadi, "Integral PML absorbing boundary conditions for the high-order M24 FDTD algorithm," Progress In Electromagnetics Research, Vol. 76, 141-152, 2007.
    doi:10.2528/PIER07070303

    14. Zhang, , Y. Q. and D. B. Ge, "A unified FDTD approach for electromagnetic analysis of dispersive objects," Progress In Electromagnetics Research, Vol. 96, 155-172, 2009.
    doi:10.2528/PIER09072603

    15. Tay , W. C. and E. L. Tan, "Implementation of the Mur first order absorbing boundary condition in e±cient ADI-FDTD method," IEEE Int. Symp. Antennas Propagat. USNC/URSI Nat. Radio Sci. Meeting, Charleston, SC, Jun. 2009.

    16. Cakir, G., "Design of a compact and wideband microstrip bandstop filter," Microwave Opt. Technol. Lett., Vol. 50, 2612-2614, 2008.
    doi:10.1002/mop.23742

    17. Guan , X. H. , S. Jiang, L. Shen, H. W. Liu, G. H. Li, and D. M. Xu, "A microstrip dual-band bandpass filter based on a novel admittance inverter," IEEE MTT-S International Microwave Symposium, 577-580, 2010.