Vol. 28

Latest Volume
All Volumes
All Issues
2011-12-07

Analytical Calculation of Band Gap of a 1D Planar Ternary Photonic Crystal by Simulating with a Symmetric Lossless Transmission Line

By Abdolrasoul Gharaati and Alireza Serajfard
Progress In Electromagnetics Research Letters, Vol. 28, 101-109, 2012
doi:10.2528/PIERL11102007

Abstract

We simulate a 1D ternary photonic crystal (TPC) employed as a clad of a photonic crystal waveguide (PCW) which consists three different lossless dielectric layers as a unit-cell. Calculating input impedance at each layer interface and using a lossless reciprocal transmission line as a model, we can predict angle intervals in which reflection occurs due to photonic crystal effect. Comparing this method with transfer matrix method and bang structure shows perfect agreement.

Citation


Abdolrasoul Gharaati and Alireza Serajfard, "Analytical Calculation of Band Gap of a 1D Planar Ternary Photonic Crystal by Simulating with a Symmetric Lossless Transmission Line," Progress In Electromagnetics Research Letters, Vol. 28, 101-109, 2012.
doi:10.2528/PIERL11102007
http://test.jpier.org/PIERL/pier.php?paper=11102007

References


    1. Miyoki, S. , S. Sato, M. Ohashi, and M. K. Fujimoto, "Technique to estimate the re°ectance of a high-reflectance dielectric multilayer coating mirror using incident beam angular dependence of its transmittance," Optical Review, Vol. 5, 17-19, 1998.
    doi:10.1007/s10043-998-0017-9

    2. Brunner, R. and E. Pincik, "Reflectance spectrometry of TiO2 optical coatings on C-Si: The real data based simulation," Acta Physica Slovaca, Vol. 51, 17-26, 2001.

    3. Cho, , K., , T. Hirai, and T. Ikawa, "Propagating mode in the photonic gap of 1D resonant Bragg reflector," Journal of Luminescence, Vol. 100, 283-289, 2002.
    doi:10.1016/S0022-2313(02)00422-2

    4. Gusarov , A. I., D. B. Doyle, F. Berghmans, and O. Deparis, "Analysis of photo induced stress distribution in fiber Bragg gratings," Optics Letters, Vol. 24, 1334-1336, 1999.
    doi:10.1364/OL.24.001334

    5. Nistad, B. , M. W. Haakestad, and J. Skaar, "Dispersion properties of planar Bragg waveguides," Optics Communications, Vol. 265, 153-160, 2006.
    doi:10.1016/j.optcom.2006.03.014

    6. Burckel, D. B. and S. R. J. Brueck, "Generalized transverse Bragg waveguides," Optics Express, Vol. 13, 9202-9210, 2005.
    doi:10.1364/OPEX.13.009202

    7. Srivastava, R., S. Pati, and S. P. Ojha, "Enhancement of omnidirectional re°ection in photonic crystal heterostructures," Progress In Electromagnetics Research B, Vol. 1, 197-208, 2008.
    doi:10.2528/PIERB07102903

    8. Krauss, , T. F., "Planar photonic crystal waveguide devices for integrated optics," Phys. Stat. Sol. (A), Vol. 197, 688-702, 2003.
    doi:10.1002/pssa.200303117

    9. SΦndergaard, T. and A. Lavrinenko, "Large-bandwidth planar photonic crystal waveguides," Optics Communications, Vol. 203, 263-270, 2002.
    doi:10.1016/S0030-4018(02)01172-0

    10. Wu , L., "Planar photonic crystal polarization splitter," Optics Letters, Vol. 29, 1620-1622, 2004.
    doi:10.1364/OL.29.001620

    11. Wang, Z.-Y., X.-M. Cheng, X.-Q. He, S.-L. Fan, and W.-Z. Yan, "Photonic crystal narrow filters with negative refractive index structural defects," Progress In Electromagnetics Research, Vol. 80, 421-430, 2008.
    doi:10.2528/PIER07121002

    12. Oraizi , H. and M. Afsahi, "Analysis of planar dielectric multilayers as FSS by transmission line transfer matrix method (TLTMM)," Progress In Electromagnetics Research, Vol. 74, 217-240, 2007.
    doi:10.2528/PIER07042401

    13. Romo, G. and T. Smy, "Dispersion relation calculation of photonic crystals using the transmission line matrix method," Int. J. Numer. Model, Vol. 17, 451-459, 2004.
    doi:10.1002/jnm.550

    14. Safaai-Jazi, A., M. R. Albandakji, and S. Mirlohi, "Exact solutions of planar photonic crystal waveguides with infinite claddings," Proc. of SPIE, 6369, 63690K, 2006.

    15. Banerjee, A., "Enhanced refractometric optical sensing by using one-dimensional ternary photonic crystals," Progress In Electromagnetics Research, Vol. 89, 11-22, 2009.
    doi:10.2528/PIER08112105

    16. Xiao, Z. Y. and Z. H. Wang, "One-dimensional chiral photonic band gap structure analyzed by non-symmetric transmission-line method," Optics Communications, Vol. 237, 229-233, 2004.
    doi:10.1016/j.optcom.2004.04.015

    17. Poza , D. M., Microwave Engineering, John Wiley & Sons, Inc., 2005.

    18. Torrungrueng, D. and S. Lamultree, "Analysis of planar multilayer structures at oblique incidence using an equivalent BCITL model," Progress In Electromagnetics Research C, Vol. 4, 13-24, 2008.
    doi:10.2528/PIERB07121903

    19. Gharaati, A. and S. A. Serajfard, "Investigation of a ternary 1D photonic crystal band gap width," ICP2010-48, 2010.

    20. Manzanares-Martinez, J. , P. Castro-Garay, D. Moctezuma-Enriquez, R. Archuleta-Garcia, and M. A. Velarde-Chong, "Complex band structure in one-dimensional photonic heterostructures," Adv. Studies Theor. Phys., Vol. 4, 759-772, 2010.

    21. Gharaati, A. Z. Zare, "Photonic band structures and enhancement of omnidirectional reflection bands by using a ternary 1D photonic crystal including left-handed materials," Progress In Electromagnetics Research M, Vol. 20, 80-94, 2011.
    doi:10.2528/PIERM11070711