Vol. 28

Latest Volume
All Volumes
All Issues
2011-12-19

A Compact Zeroth Order Resonating Antenna Using Complementary Split Ring Resonator with Mushroom Type of Structure

By Gautam Kumar Singh, Raghvendra Kumar Chaudhary, and Kumar Vaibhav Srivastava
Progress In Electromagnetics Research Letters, Vol. 28, 139-148, 2012
doi:10.2528/PIERL11110709

Abstract

A compact zeroth order resonance (ZOR) antenna based on composite right left handed Transmission Line (CRLH TL) with complementary split ring resonators (CSRR) is presented in this paper. In the proposed antenna, CRLH TL is realized by the conventional mushroom type (CMT) of structure. The unit cell of proposed antenna comprises the CMT structure and CSRR where the CSRR is etched on the patch of the mushroom. Presence of CSRR introduces the lumped components in the shunt arm of the unit cell which results in the reduction of the shunt resonance frequency. The presented antenna consists of 4 unit cells and is excited by the quarter wavelength TL. The simulation and experimental results are in close agreement. The proposed structure has nearly 8.32% footprint area of the conventional half wavelength antenna.

Citation


Gautam Kumar Singh, Raghvendra Kumar Chaudhary, and Kumar Vaibhav Srivastava, "A Compact Zeroth Order Resonating Antenna Using Complementary Split Ring Resonator with Mushroom Type of Structure," Progress In Electromagnetics Research Letters, Vol. 28, 139-148, 2012.
doi:10.2528/PIERL11110709
http://test.jpier.org/PIERL/pier.php?paper=11110709

References


    1. Sanada, A. , M. Kimura, I. Awai, C. Caloz, and T. Itoh, "A planar zeroth order resonator antenna using left handed transmission line," IEEE European Microwave Conference, 1341-1344, 2004.

    2. Lai , A., K. M. K. H. Leong, and T. Itoh, "Infinite wavelength resonant antennas with monopole radiation pattern based on periodic structures," IEEE Trans. Antennas Propag., Vol. 55, No. 3, 868-875, 2007.
    doi:10.1109/TAP.2007.891845

    3. Sanada , A. , C. Caloz, and T. Itoh, "Planar distributed structures with negative refractive properties," IEEE Trans. Microwave Theory Tech., Vol. 52, No. 2, 1252-1263, 2004.
    doi:10.1109/TMTT.2004.825703

    4. Lee , J. G. and J. H. Lee, "Zeroth order resonance loop antenna," IEEE Trans. Antennas Propag., Vol. 55, No. 3, 994-997, 2007.
    doi:10.1109/TAP.2007.891875

    5. Park, J. H. , Y. H. Ryu, and J. H. Lee, "Mu zero resonance antenna," IEEE Trans. Antennas Propag., Vol. 58, No. 6, 1865-1875, 2010.
    doi:10.1109/TAP.2010.2046832

    6. Erentok, A. and R. W. Ziolkowski, "Metamaterial-inspired e±cient electrically small antennas," IEEE Trans. Antennas Propag., Vol. 56, No. 3, 2008.
    doi:10.1109/TAP.2008.916949

    7. Alici, K. B. , A. E. Serebryannikov, and E. Ozbay, "Radiation properties and coupling analysis of a metamaterial based, dual polarization, dual band, multiple split ring resonator antenna," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 8-9, 1183-1193, 2010.
    doi:10.1163/156939310791586188

    8. Alu, A., F. Bilotti, N. Engheta, L. Vegni, "Subwavelength, compact, resonant patch antennas loaded with metamaterials," IEEE Trans. Antennas Propag., Vol. 55, No. 1, 13-25, 2007.
    doi:10.1109/TAP.2006.888401

    9. Veselago , V. G., "The electrodynamics of substances with simultaneously negative values of ε and μ," Soviet Physics Uspekhi, Vol. 10, 509-514, 1968.
    doi:10.1070/PU1968v010n04ABEH003699

    10. Lai, A., C. Caloz, and T. Itoh, "Composite right/left-handed transmission line metamaterials," IEEE Microwave Magazine, Vol. 5, No. 3, 34-50, 2004.
    doi:10.1109/MMW.2004.1337766

    11. Caloz, C. and T. Itoh, "Novel microwave devices and structures based on the transmission line approach of meta-materials," IEEE-MTT International Symp., Vol. 1, 195-198, 2003.

    12. Falcone , F., T. Lopetegi, J. D. Baena, R. Marques, F. Martin, and M. Sorolla, "Eddective negative stopband microstrip lines based on complementary split ring resonators," IEEE Microw. Wireless Compon. Lett., Vol. 14, No. 6, 280-282, 2004.
    doi:10.1109/LMWC.2004.828029

    13. Baena, J., J. Bonache, F. Martin, R. Marques, and F. Falcone, "Equivalent-circuit models for split-ring resonators and complementary split-sing resonators coupled to planar transmission lines," IEEE Trans. Microwave Theory Tech., Vol. 53, No. 4, 1451-1461, 2005.
    doi:10.1109/TMTT.2005.845211

    14. Bonache , J. , M. Gil, I. Gil, J. Garcia-Garcia, and F. Martin, "Limitations and solutions of resonant-type metamaterial transmission lines for filter applications: The hybrid approach," IEEE MTT-S Intl. Microwave Symp. Digest, 939-942, San Francisco, CA, USA, 2006.

    15. Baek, S. and S. Lim, "Miniaturized zeroth order resonating antenna on spiral slotted ground," Electronic Letter, Vol. 45, 2009.

    16. Peng , L., C. L. Ruan, and Z.-Q. Li, "A novel compact and polarization-dependent mushroom-type EBG using CSRR for dual/triple-band applications," IEEE Microw. Wireless Compon. Lett., Vol. 20, No. 9, 489-491, 2010.
    doi:10.1109/LMWC.2010.2051536

    17. Lee , M. J., S. Pyo, W. S. Yoon, I. C. Shin, and Y. S. Kim, "A size reduced CRLH resonant antenna based on Interdigital capacitors with defected ground," Microwave Opt. Technol. Lett., Vol. 52, 2142-2145, 2010.
    doi:10.1002/mop.25362

    18. Jang, K. D. , J. H. Kim, D. H. Lee, and W. S. Park, "Compact resonant antenna based on composite right/left handed transmission line with magneto dielectric substrate," Microwave Opt. Technol. Lett., Vol. 51, 1994-1997, 2009.
    doi:10.1002/mop.24490

    19. Sievenpiper , D., L. Zhang, R. F. Jimenez Broas, N. G. A. Opolous, and E. Yablonovitch, "High-impedance electromagnetic surfaces with a forbidden frequency band," IEEE Trans. Microwave Theory Tech., Vol. 47, No. 11, 2059-2074, 1999.
    doi:10.1109/22.798001