Vol. 31

Latest Volume
All Volumes
All Issues

Novel Nano-Antenna System Design Using Photonic Spin in a Panda Ring Resonator

By Nopparat Thammawongsa, Narongchai Moongfangklang, Somsak Mitatha, and Preecha P. Yupapin
Progress In Electromagnetics Research Letters, Vol. 31, 75-87, 2012


A novel nano-antenna system design using photonic spin in a PANDA ring resonator is proposed. This photonic spins are generated by a soliton pulse within a PANDA ring, in which the transverse electric (TE) and a transverse magnetic (TM) fields are generated. The magnetic field is introduced by using an aluminum plate coupling to the microring resonator, in which the spin-up and spin-down states are induced, where finally, the photonic dipoles are formed. In operation, the dipole oscillation frequency is controlled by a soliton power, coupling coefficients, and ring radii. The obtained results have shown that THz frequency source can be generated by the proposed system. The advantage of proposed system is that the simple and compact nano-antenna with high power pulse source can be fabricated, which can generate and detecte the THz frequency in a single system.


Nopparat Thammawongsa, Narongchai Moongfangklang, Somsak Mitatha, and Preecha P. Yupapin, "Novel Nano-Antenna System Design Using Photonic Spin in a Panda Ring Resonator," Progress In Electromagnetics Research Letters, Vol. 31, 75-87, 2012.


    1. Altug, H., A. A. Yanik, R. Adato, S. Aksu, A. Artar, and M. Huang, "Plasmonics for ultrasensitive biomolecular nanospectroscopy," 2010 International Conference on Optical MEMS and Nanophotonics (OPT MEMS), 63-64, Aug. 9-12, 2010.

    2. Pal, A., A. Mehta, M. E. Marhic, K. C. Chan, and K. S. Teng, "Microresonator antenna for biosensing applications," IET Micro & Nano Letters, Vol. 6, No. 8, 665-667, 2011.

    3. Balocco, C., S. R. Kasjoo, X. Lu, L. Zhang, Y. Alimi, S. Winnerl, P. Bao, Y. Luo, K. Lee, and A. M. Song, "Novel terahertz nanodevices and circuits," 10th IEEE International Conference 10th IEEE International Conference , 1176-1179, Nov. 1-4, 2010..

    4. Kawakami, A., S. Saito, and M. Hyodo, "Fabrication of nano-antennas for superconducting infrared detectors," IEEE Transactions on Applied Superconductivity, Vol. 21, No. 3, 632-635, 2011.

    5. Bareiss, M., B. N. Tiwari, A. Hochmeister, G. Jegert, U. Zschieschang, H. Klauk, B. Fabel, G. Scarpa, G. Koblmuller, G. H. Bernstein, W. Porod, and P. Lugli , "Nano antenna array for terahertz detection," IEEE Transactions on Microwave Theory and Techniques, Vol. 59, No. 10, 2751-2757, 2011.

    6. Bailey, R., "Electromagnetic wave energy converter,", United State Patent, Vol. 3760257, 1973.

    7. Alvin, M., "Device for conversion of light power to electric power,", United States Patent, Vol. 4445050, Apr. 24, 1984.

    8. Lin, G. H., R. Abdu, and J. O. M. Bockris, "Investigation of resonance light absorption and rectification by subnanostructures," Journal of Applied Physics, Vol. 80, No. 1, 565-586, 1996.

    9. Sendur, K. and E. Baran, "Near-field optical power transmission of dipole nano-antennas," Applied Physics B: Lasers and Optics, Vol. 96, No. 2, 325-335, 2009.

    10. Cetin, A. E., A. A. Yanik, C. Yilmaz, S. Somu, A. Busnaina, and H. Altug, "Monopole antenna arrays for optical trapping, spectroscopy, and sensing," Applied Physics Letters, Vol. 98, No. 11, 111110-111110-3, 2011.

    11. Pissuwan, D., S. M. Valenzuela, and M. B. Cortie, "Prospects for gold nanorod particles in diagnostic and therapeutic applications," Biotechnology and Genetic Engineering Reviews, Vol. 25, No. 1, 93-112, 2008.

    12. Bakker, R. M., V. P. Drachev, Z. Liu, H.-K. Yuan, R. H. Pedersen, A. Boltasseva, J. Chen, J. Irudayaraj, A. V. Kildishev, and V. M. Shalaev, "Nanoantenna array-induced fluorescence enhancement and reduced lifetimes," New Journal of Physics, Vol. 10, No. 12, 125022-125038, 2008.

    13. Guo, H., T. P. Meyrath, T. Zentgraf, N. Liu, L. Fu, H. Schweizer, and H. Giessen, "Optical resonances of bowtie slot antennas and their geometry and material dependence," Optics Express, Vol. 16, No. 11, 7756-7766, 2008.

    14. Taminiau, T. H., F. D. Stefani, and N. F. van Hulst, "Enhanced directional excitation and emission of single emitters by a nano-optical Yagi-Uda antenna," Optics Express, Vol. 16, No. 14, 10858-10866, 2008.

    15. Cao, P., X. Zhang, W. J. Kong, L. Cheng, and H. Zhang, "Superresolution enhancement for the superlens with anti-reflection and phase control coatings via surface plasmons modes of asymmetric structure," Progress In Electromagnetics Research, Vol. 119, 191-206, 2011.

    16. Suyama, T. and Y. Okuno, "Enhancement of TM-TE mode conversion caused by excitation of surface plasmons on a metal grating and its application for refractive index measurement," Progress In Electromagnetics Research, Vol. 72, 91-103, 2007.

    17. Moscatelli, A., "Gold nanoparticles afloat," Nature Materials, Vol. 11, No. 1, 8, 2011.

    18. Hovel, S., A. Bischoff, N. C. Gerhardt, M. R. Hofmann, T. Ackemann, A. Kroner, and R. Michalzik, "Optical spin manipulation of electrically pumped vertical-cavity surface-emitting lasers," Applied Physics Letters, Vol. 92, No. 4, 041118-041118-3, 2008.

    19. Mitatha, S., C. Teeka, J. Ali, and P. P. Yupapin, "Soliton spin and wave-particle duality," Optics and Photonics Letters (OPL), Vol. 4, No. 2, 63-73, 2011.

    20. Sarapat, K., N. Sangwara, K. Srinuanjan, P. P. Yupapin, and N. Pornsuwancharoen, "Novel dark-bright optical solitons conversion system and power amplification," Optics Engineering, Vol. 48, No. 4, 045004-7, 2009.

    21. Glomglome, S., I. Srithanachai, C. Teeka, M. Mitatha, S. Niemcharoen, and P. P. Yupapin, "Optical spin generated by a soliton pulse in an add-drop filter for optoelectronic and spintronic use," Optics & Laser Technology, Vol. 44, No. 5, 1294-1297, 2012.

    22. Xu, Q., D. Fattal, and R. G. Beausoleil, "Silicon microring resonators with 1.5-μm radius," Optics Express, Vol. 16, No. 6, 4309-4315, 2008.

    23. Udomwach, K., K. Sarapat, and P. P. Yupapin, "Dynamic modulated Gaussian pulse propagation within the double PANDA ring resonator system ," Microwave and Optical Technology Letters, Vol. 52, No. 8, 1818-1821, 2010.

    24. Neamen, D. A., Semiconductor Physics and Devices, Tsinghua University Press, New York, 2003.

    25. King, R., C. W. Harrison, and Jr., "The distribution of current along a symmetrical center-driven antenna," Proceedings of the IRE, Vol. 31, 548-567, 1943.

    26. Pocklington, H. C., "Electrical oscillations in wires," Proceedings of the Cambridge Philosophical Society, Vol. 9, No. 7, 324-332, 1897.

    27. Biagioni, P., J. S. Huang, and B. Hecht, "Nanoantennas for visible and infrared radiation," Reports on Progress in Physics, Vol. 75, No. 2, 24402-24441, 2012.

    28. Balanis, C. A., "Antenna theory: A review," Proceedings of the IEEE, Vol. 80, 7-22, 1992.

    29. Rakic, A. D., A. B. Djuriic, J. M. Elazar, and M. L. Majewski, "Optical properties of metallic films for vertical-cavity optoelectronic devices," Applied Optics, Vol. 37, No. 22, 5271, 1998.

    30. Barnes, W. L., A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature, Vol. 424, No. 6950, 824-830, 2003.

    31. Huang, J. S., T. Feichtner, P. Biagioni, and B. Hecht, "Impedance matching and emission properties of nanoantennas in an optical nanocircuit," Nano Letters, Vol. 9, No. 5, 1897-1902, 2009.