Vol. 31

Latest Volume
All Volumes
All Issues
2012-04-20

Material Selection of RF-MEMS Switch Used for Reconfigurable Antenna Using Ashby's Methodology

By Ashish Kumar Sharma and Navneet Gupta
Progress In Electromagnetics Research Letters, Vol. 31, 147-157, 2012
doi:10.2528/PIERL12021101

Abstract

This paper reports material selection methodology for radio frequency - micro electro mechanical systems (RF-MEMS) switches used for reconfigurable antennas. As there are variety of materials available to design engineer, a proper technique to select the best possible material is needed. Three primary performance indices, pull-in voltage, RF-loss, and thermal residual stress, are used to obtain the desired performance. The selection chart shows that aluminum is the most suitable material for being used as bridge material in RF-MEMS switches to provide the best performance in reconfigurable antenna.

Citation


Ashish Kumar Sharma and Navneet Gupta, "Material Selection of RF-MEMS Switch Used for Reconfigurable Antenna Using Ashby's Methodology," Progress In Electromagnetics Research Letters, Vol. 31, 147-157, 2012.
doi:10.2528/PIERL12021101
http://test.jpier.org/PIERL/pier.php?paper=12021101

References


    1. Cetiner, B. A., G. R. Crusats, L. Jofre, and N. Bıyıklı, "RF MEMS integrated frequency reconfigurable annular slot antenna," IEEE Trans. Antennas Propag., Vol. 58, No. 3, 626-632, 2010.
    doi:10.1109/TAP.2009.2039300

    2. Jung, C. W., M. J. Lee, and F. D. Flaviis, "Reconfigurable dual-band antenna with high frequency ratio (1.6 : 1) using MEMS switches," Electronics Letters, Vol. 44, No. 2, 76-77, 2008.
    doi:10.1049/el:20082349

    3. Cheng, S., P. Rantakari, R. Malmqvist, C. Samuelsson, T. Vaha-Heikkila, A. Rydberg, and J. Varis, "Switched beam antenna based on RF MEMS SPDT switch on quartz substrate," IEEE Antennas Wireless Propag. Lett., Vol. 8, 383-386, 2009.
    doi:10.1109/LAWP.2009.2018712

    4. Cheng, C. C., B. Lakshminarayanan, and A. Abbaspour-Tamijani, "A programmable lens-array antenna with monolithically integrated MEMS switches," IEEE Trans. Microw. Theory Tech., Vol. 57, No. 8, 1874-1884, 2009.
    doi:10.1109/TMTT.2009.2025422

    5. Jung, C. W. and M. J. Lee, "Reconfigurable scan-beam single-arm spiral antenna integrated with RF-MEMS switches," IEEE Trans. Antennas Propag., Vol. 54, No. 2, 455-463, 2006.
    doi:10.1109/TAP.2005.863407

    6. Srikar, V. T. and S. M. Spearing, "Material selection for microfabricated electrostatic actuators," Sens Actuators A, Vol. 102, 279-285, 2003.

    7. Rao, R. V., "A material selection model using graph theory and matrix approach," Materials Science and Engineering, Vol. 431, 248-255, 2006.
    doi:10.1016/j.msea.2006.06.006

    8. Roth, R., F. Field, and J. Clark, "Multi-attribute utility analysis," Journal of Computer-Aided Materials Design, Vol. 1, No. 3, 325-342, 1994.
    doi:10.1007/BF00712855

    9. Guisbiers, G., E. Herth, B. Legrand, N. Rolland, T. Lasri, and L. Buchaillot, "Materials selection procedure for RF-MEMS," Microelectronic Engineering, Vol. 87, 1792-1795, 2010.
    doi:10.1016/j.mee.2009.10.016

    10. Ashby, M. F., Materials Selection in Mechanical Design, 2nd Edition, Butterworth-Heinemann, Oxford, UK, 1999.

    11. Puyal, V., D. Dragomirescu, C. Villeneuve, J. Ruan, P. Pons, and R. Plana, "Frequency scalable model for MEMS capacitive shunt switches at millimeter-wave frequencies," IEEE Trans. Microw. Theory Tech., Vol. 57, No. 11, 2824-2833, 2009.
    doi:10.1109/TMTT.2009.2032473

    12. Ekkels, P., X. Rottenberg, R. Puers, and H. A. C. Tilmans, "Evaluation of platinum as a structural thin film material for RF-MEMS devices ," J. Micromech. Microeng., Vol. 19, 065010-065018, 2009.
    doi:10.1088/0960-1317/19/6/065010

    13. Palego, C., J. Deng, Z. Peng, S. Halder, J. C. M. Hwang,D. I. Forehand, D. Scarbrough, and C. L. Goldsmith, "Robustness of RF MEMS capacitive switches with molybdenum membranes," IEEE Trans. Microw. Theory Tech., Vol. 57, No. 12, 3262-3269, 2009.
    doi:10.1109/TMTT.2009.2033885

    14. Alam, A. H. M. Z., M. R. Islam, S. Khan, N. B. Mohd Sahar, and N. B. Zamani, "Effects of MEMS material on designing a multi-band reconfigurable antenna," Iranian Journal Of Electrical and Computer Engineering, Vol. 8, No. 2, 112-118, 2009.

    15. Reddy, G. P. and N. Gupta, "Material selection for microelectronic heat sinks: An application of the Ashby approach," Materials and Design, Vol. 31, 113-117, 2010.
    doi:10.1016/j.matdes.2009.07.013

    16. Rebeiz, G. M., RF MEMS: Theory, Design, and Technology, 3rd Edition, John Wiley & Sons Inc., New Jersey, 2003.

    17. Callister, W. D., Material Science and Engineering: An Introduction, 7th edition, John Wiley & Sons Inc., New York, 2007.

    18. Kingsley, N., D. E. Anagnostou, M. Tentzeris, and J. Papapolymerou, "RF MEMS sequentially reconfigurable sierpinski antenna on a flexible organic substrate with novel DC-biasing technique," J. Microelectromech. Syst., Vol. 16, No. 5, 1185-1192, 2007.
    doi:10.1109/JMEMS.2007.902462

    19. Reines, I., B. Pillans, and G. M. Rebeiz, "Thin-film aluminum RF MEMS switched capacitors with stress tolerance and temperature stability," J. Microelectromech. Syst., Vol. 20, No. 1, 193-202, 2011.
    doi:10.1109/JMEMS.2010.2090505

    20. Dai, C.-L. and J.-H. Chen, "Low voltage actuated RF microme-chanical switches fabricated using CMOS-MEMS technique," Microsyst. Technol., Vol. 12, 1143-1151, 2006.
    doi:10.1007/s00542-006-0243-7