Vol. 33

Latest Volume
All Volumes
All Issues
2012-06-20

A Dual-Band Metamaterial Absorber Based with Resonant-Magnetic Structures

By Hong-Min Lee and Hyungsup Lee
Progress In Electromagnetics Research Letters, Vol. 33, 1-12, 2012
doi:10.2528/PIERL12050110

Abstract

In this paper, we present a new type of a double-negative metamaterial (MTM) absorber based with resonant-magnetic structures, with a periodic array composed of a split-ring resonator (SRR) and two open complementary split-ring resonators (OCSRRs). In contrast to common absorber configurations, the absorber proposed in this paper does not use a metallic back plate or a resistive sheet. In order to eliminate the need for this metallic back plate, a planar array of SRRs is placed parallel to the incident wave propagation direction. An appropriately designed combination structure of two OCSRRs and a SRR exhibits negative permittivity and negative permeability in the same frequency band. Each unit cell is printed on both sides of an FR-4 substrate. A prototype absorber was fabricated with a planar array of 75 × 42 unit cells. Both simulations and experiments verify the effectiveness of the proposed backplane-less MTM absorber. The proposed backplane-less absorber can be used for microwave applications.

Citation


Hong-Min Lee and Hyungsup Lee, "A Dual-Band Metamaterial Absorber Based with Resonant-Magnetic Structures," Progress In Electromagnetics Research Letters, Vol. 33, 1-12, 2012.
doi:10.2528/PIERL12050110
http://test.jpier.org/PIERL/pier.php?paper=12050110

References


    1. Fnate, R. L. and M. T. McCormack, "Reflection properties of the Salisbury screen," IEEE Trans. Antennas Propag., Vol. 30, 1443-1454, 1968.

    2. Landy, N. I., S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, "Perfect metamaterial absorber," Phys. Rev. Lett., 274021-274024, 2008.

    3. Tao, H., N. I. Landy, C. M. Bingham, X. Zang, R. D. Averitt, and W. J. Padilla, "A metamaterial absorber for the terahertz regime: Design, fabrication and characterization ," Opt. Express, Vol. 16, 7181-7188, 2008.
    doi:10.1364/OE.16.007181

    4. Cheng, Y. and H. Yang, "Design, simulation, and measurement of metamaterial absorber," Microwave Opt. Tech. Lett., Vol. 52, 877-880, 2010.
    doi:10.1002/mop.25068

    5. Tao, H., C. M. Bingham, D. Pilon, K. Fan, A. C. Strkwerda, D. Shrekenhammer, W. J. Padilla, X. Zhang, and R. D. Averitt, "A dual band terahertz metamaterial absorber," J. Appl. Phys. D, Vol. 43, 225102-225106, 2010.
    doi:10.1088/0022-3727/43/22/225102

    6. Li, M.-H., H.-L. Yang, and X.-W. Hou, "Perfect metamaterial absorber with dual bands," Progress In Electromagnetics Research, Vol. 108, 37-49, 2010.
    doi:10.2528/PIER10071409

    7. Lee, J. and S. Lim, "Bandwidth-enhanced and polarization-insensitive metamaterial absorber using double resonance," Electron. Lett., Vol. 47, 8-9, 2011.
    doi:10.1049/el.2010.2770

    8. Cheng, Y., H. Yang, Z. Cheng, and N. Wu, "Perfect metamaterial absorber based on a split-ring-cross resonator," J. Appl. Phys. A, Vol. 102, 99-103, 2010.

    9. Alici, K. B., F. Bilotti, L. Vegni, and E. Ozbay, "Experimental verification of metamaterial based subwavelength microwave absorbers ," J. Appl. Phys., Vol. 108, 0831131-0831136, 2010.
    doi:10.1063/1.3493736

    10. Velez, A., F. Aznar, J. Bonache, J. M. Velazquez-Ahumada, and F. Martin, "Open complimentary split ring resonators (OCSRRs) and their application to wideband CPW band pass filters ," IEEE Microwave & Wirel. Compon. Lett., Vol. 19, 197-199, 2009.
    doi:10.1109/LMWC.2009.2015490

    11. Katsarakis, N., T. Koschny, and M. Kafesaki, "Electric coupling to the magnetic resonance of split ring resonators," Appl. Phys. Lett., Vol. 84, No. 15, 2943-2945, 2004.
    doi:10.1063/1.1695439

    12. Nicolson, A. M. and G. F. Ross, "Measurement of the intrinsic properties of materials by time-domain technique," IEEE Trans. on Instrumentation and Measurement, Vol. 19, No. 4, 377-382, 1970.
    doi:10.1109/TIM.1970.4313932

    13. Depine, R. A. and A. Lakhtakia, "A new condition to identify isotropic dielectric-magnetic materials displaying negative phase velocity," Microwave Opt. Tech. Lett., Vol. 41, 315-316, 2004.
    doi:10.1002/mop.20127