Vol. 32

Latest Volume
All Volumes
All Issues
2012-06-08

Distortion Analysis of Electromagnetic Field Sensors in Laguerre Functions Subspace

By Shekoofeh Saboktakin and Behzad Kordi
Progress In Electromagnetics Research Letters, Vol. 32, 109-118, 2012
doi:10.2528/PIERL12050801

Abstract

A time-domain approach for distortion analysis of electromagnetic eld senors is developed in Laguerre functions subspace. Using Laguerre convolution preservation property, it is proved that every electromagnetic eld sensor corresponds to an equivalent discrete-time LTI system. The equivalent discrete-time system is compared to a reference system as a measure of distortion. Further, this analysis may be performed repeatedly to obtain a bandwidth-limited distortion characteristic. The method is employed to compare the distortion characteristic of an asymptotic conical dipole (ACD) to wire monopoles of various lengths. A time-domain simulation is performed in order to nd the distortion characteristics by solving an electric eld integral equation (EFIE) using the method of moments (MoM).

Citation


Shekoofeh Saboktakin and Behzad Kordi, "Distortion Analysis of Electromagnetic Field Sensors in Laguerre Functions Subspace," Progress In Electromagnetics Research Letters, Vol. 32, 109-118, 2012.
doi:10.2528/PIERL12050801
http://test.jpier.org/PIERL/pier.php?paper=12050801

References


    1., "IEEE standard for calibration of electromagnetic field sensors and probes, excluding antennas, from 9 kHz to 40 GHz,", IEEE Std 1309-2005 (Revision of IEEE Std 1309-1996), 2005.
    doi:10.1109/TIM.2009.2030928

    2. Metwally, I. A., "D-dot probe for fast-front high-voltage measurement," IEEE Trans. Instrumentation and Measurement, Vol. 59, No. 8, 2211-2219, Aug. 2010.
    doi:10.1109/TEMC.2004.831892

    3. Weber, T. and J. L. Ter Haseborg, "Measurement techniques for conducted HPEM signals," IEEE Trans. Electromagnetic Compatibility, Vol. 46, No. 3, 431-438, Aug. 2004.
    doi:10.1109/TEMC.1982.304069

    4. Shumpert, T., M. Honnell, and G. Lott, "Measured spectral amplitude of lightning sferics in the HF, VHF, and UHF bands," IEEE Trans. Electromagnetic Compatibility, Vol. 24, No. 3, 368-369, 1982.
    doi:10.1109/TDEI.2008.4712677

    5. Sarathi, R. and G. Koperundevi, "UHF technique for identification of partial discharge in a composite insulation under ac and dc voltages," IEEE Trans. Dielectrics and Electrical Insulation, Vol. 15, No. 6, 1724-1730, Dec. 2008.
    doi:10.1109/74.262629

    6. Lamensdorf, D. and L. Susman, "Baseband-pulse-antenna techniques," IEEE Antennas and Propagation Magazine, Vol. 36, 20-30, Feb. 1994.
    doi:10.1109/LAWP.2008.921350

    7. Carro, P. and J. De Mingo, "Ultrawide-band antenna distortion characterization using Hermite-Gauss signal subspaces," IEEE Antennas and Wireless Propagation Letters, Vol. 7, 267-270, 2008.

    8. Saboktakin, S. , B. Kordi, and , "Time-domain distortion analysis of wideband electromagnetic field sensors using Hermite-Gauss orthogonal functions," IEEE Trans. Electromagnetic Compatibility, 2011, doi:10.1109/TEMC.2011.2170997.
    doi:10.1109/CDC.2010.5717196

    9. Kinoshita, Y. and O. Ohta, "Continuous-time system identification using compactly-supported filter kernels generated from Laguerre basis functions," 49th IEEE Conference on Decision and Control (CDC), 4461-4466, Dec. 2010.

    10. Iohvidov, I. S., "Hankel and Toeplitz Matrices and Forms Algebraic Theory," Birkhiuser, Boston, 1982.

    11. Baum, C. E., "An equivalent-charge method for defining geometries of dipole antennas," Sensor and Simulation Notes, Vol. 72, 1969.
    doi:10.1016/0021-9991(73)90167-8

    12. Miller, E. K. , A. J. Poggio, and G. J. Burke, "An integro-differential equation technique for the time-domain analysis of thin wire structures," Journal of Computational Physics, Vol. 12, 24-48, 1973.
    doi:10.1007/BF01517355

    13. Budke, G., "On a convolution property characterizing the Laguerre functions," Monatshefte fur Mathematik, Vol. 107, 281-285, 1989.

    14. Szego, G., "Orthogonal Polynomials," American Mathematical Society Providence, New York, 1939.
    doi:10.1090/S0002-9904-1944-08151-2

    15. Loomis, L. H., "A short proof of the completeness of the Laguerre functions," Bulletin of the American Mathematical Society, Vol. 50, No. 6, 386-387, 1944.
    doi: --- Either ISSN or Journal title must be supplied.