A multi-monopole-antenna system capable of generating two wide operating bands with good input matching by a voltage standing wave ratio (VSWR) of 1.5 to cover the 2.4 GHz (2400-2484 MHz), 5.2 GHz (5150-5350 MHz), and 5.8 GHz (5725-5825 MHz) bands for wireless local area network (WLAN) applications is introduced. The design mainly comprised three, metal-plate, monopole antennas symmetrically located on a main, hexagonal, ground plane and backed by vertical, step-shaped grounds protruding thereon. The step-shaped grounds not only facilitated the attaining of wide impedance bandwidth but also good port isolation. In addition, directional antenna radiation was also produced. Further, a triangular-cylinder shielding wall was placed in the center of the main ground plane for integration of the wireless, surveillance-camera module into the proposed antenna system. Details of the design prototype are described and discussed in the article.
2. Ammann, M. J., "Square planar monopole antenna," Proc. IEE National Conf. Antennas Propagat., 37-40, UK, 1999.
doi:10.1049/cp:19990010
3. Ammann, M. J. and Z. N. Chen, "Wideband monopole antennas for multi-band wireless systems," IEEE Trans. Antennas Propagat. Mag., Vol. 45, 146-150, 2003.
doi:10.1109/MAP.2003.1203133
4. Su, S. W., K. L. Wong, and C. L. Tang, "Ultra-wideband square planar monopole antenna for IEEE 802.16a operation in the 2-11 GHz band," Microwave Opt. Technol. Lett., Vol. 42, 463-466, 2004.
doi:10.1002/mop.20337
5. Su, S. W., K. L. Wong, Y. T. Cheng, and W. S. Chen, "Finite-ground-plane effects on the ultra-wideband planar monopole antenna," Microwave Opt. Technol. Lett., Vol. 43, 535-537, 2004.
doi:10.1002/mop.20526
6. Wong, K. L., C. H. Wu, and S. W. Su, "Ultra-wideband square planar metal-plate monopole antenna with a trident-shaped feeding strip," IEEE Trans. Antennas Propagat., Vol. 53, 1262-1269, 2005.
doi:10.1109/TAP.2005.844430
7. Chou, J. H. and S. W. Su, "Internal wideband monopole antenna for MIMO access-point applications in the WLAN/WiMAX bands," Microwave Opt. Technol. Lett., Vol. 50, 1146-1148, 2008.
doi:10.1002/mop.23333
8. Su, S. W., "High-gain dual-loop antennas for MIMO access points in the 2.4/5.2/5.8 GHz bands," IEEE Trans. Antennas Propagat., Vol. 58, 2412-2419, 2010.
doi:10.1109/TAP.2010.2048871
9. Su, S. W. and T. C. Hong, "Printed, multi-loop-antenna system integrated into a concurrent, dual-WLAN-band access point," Microwave Opt. Technol. Lett., Vol. 53, 317-322, 2011.
doi:10.1002/mop.25736
10. Su, S. W. and C. T. Lee, "Low-cost dual-loop-antenna system for dual-WLAN-band access points," IEEE Trans. Antennas Propagat., Vol. 59, 1652-1659, 2011.
doi:10.1109/TAP.2011.2123070
11. Su, S. W., "Integration of loop and slot antennas into one-piece metal plate for concurrent 2.4- and 5-GHz wireless local area network operation," Microwave Opt. Technol. Lett., Vol. 54, 815-820, 2012.
doi:10.1002/mop.26624
12. Chien, S. L., F. R. Hsiao, Y. C. Lin, and K. L. Wong, "Planar inverted-F antenna with a hollow shorting cylinder for mobile phone with an embedded camera," Microwave Opt. Technol. Lett., Vol. 41, 418-419, 2012.
doi:10.1002/mop.20157
13. Ansoft Corporation HFSS, Pittsburgh, PA, , http://www.ansoft.com/products/hf/hfss.
14. Volakis, J. L., Antenna Engineering Handbook, 4th Ed., Chapter 6, 16-19, McGraw-Hill, New York , 2007.