Vol. 35

Latest Volume
All Volumes
All Issues
2012-10-19

Design, Simulation and Measurement of a Dual Linear Polarization Insensitive Planar Resonant Metamaterial Absorber

By Sepideh Fallahzadeh, Keyvan Forooraghi, and Zahra Atlasbaf
Progress In Electromagnetics Research Letters, Vol. 35, 135-144, 2012
doi:10.2528/PIERL12071606

Abstract

In this paper, we introduce a highly electric-field-coupled (ELC) metamaterial planar absorber in microwave frequency range. The structure is a one layer dual linear polarization insensitive absorber, which is designed by utilizing properly arranged resonant structure with orthogonal polarization sensitivity. In addition, this metamaterial absorber operates over a wide angular range, from 0° to 65° with more than 95% absorption peak. Absorption peak occurs at the frequency of 10.05 GHz with 98% magnitude with FWHM about 5%. In addition to simulation, the theoretically results are verified by measurement, and test results generally agree with simulation ones. The dielectric spacer loss tangent for higher absorption peak and broader bandwidth has been investigated too, and the optimum value for the best absorber structure performance has been obtained.

Citation


Sepideh Fallahzadeh, Keyvan Forooraghi, and Zahra Atlasbaf, "Design, Simulation and Measurement of a Dual Linear Polarization Insensitive Planar Resonant Metamaterial Absorber," Progress In Electromagnetics Research Letters, Vol. 35, 135-144, 2012.
doi:10.2528/PIERL12071606
http://test.jpier.org/PIERL/pier.php?paper=12071606

References


    1. Veselago, V. G., "The electrodynamics of substances with simultaneously negative value of ε and μ," Sov. Phys. Usp., Vol. 10, No. 4, 509-514, Feb. 1968.
    doi:10.1070/PU1968v010n04ABEH003699

    2. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Low frequency plasmons in thin-wire structure," J. Phys. Condens. Matter, Vol. 10, 4785-4809, 1998.
    doi:10.1088/0953-8984/10/22/007

    3. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Strewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech., Vol. 47, 2075-2084, 1999.
    doi:10.1109/22.798002

    4. Smith, D. R., W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett., Vol. 84, No. 18, 4184-4187, May 2000.
    doi:10.1103/PhysRevLett.84.4184

    5. Caloz, C. and T. Itoh, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications, John Wiley & Sons, New Jersey, 2006.

    6. Tao, H., A. C. Strikwerda, K. Fan, C. M. Bingham, W. J. Padilla, X. Zhang, and R. D. Averitt, "Terahertz metamaterials on free-standing highly-flexible polyimide substrates," Appl. Phys., Vol. 41, Nov. 2008.

    7. Tao , H. , N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, "A metamaterial absorber for the terahertz regime: Design, fabrication and characterization," Optic. Exp., Vol. 16, No. 10, 7181-7188, May 2008.
    doi:10.1364/OE.16.007181

    8. Tao, H., C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekehamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, "Highly flexible wide angle incidence terahertz metamaterial absorber: Design, fabrication and characterization," Phys. Rew. B, Vol. 78, 2008.

    9. Landy, N. I., S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, "Perfect metamaterial absorber," Phys. Rew. Lett., Vol. 100, May 2008.

    10. Wen, Q. Y., H. W. Zhang, Y. S. Xie, Q. H. Yang, and Y. L. Liu, "Dual band terahertz metamaterial absorber: Design, fabrication and characterization," Appl. Phys. Lett., Vol. 95, Dec. 2009.

    11. Zhu, B., Z.-B. Wang, Z.-Z. Yu, Q. Zhang, J.-M. Zhao, Y.-J. Feng, and T. Jiang, "Planar metamaterial microwave absorber for all wave polarizations," Chin. Phys. Lett., Vol. 26, No. 11, 2009.

    12. Tao, H., C. M. Bingham, D. Pilon, K. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, and R. D. Averitt, "A dual band terahertz metamaterial absorber," Appl. Phys. Lett., Vol. 43, 2010.

    13. Cheng, Y. and H. Yang, "Design, simulation, and measurement of metamaterial absorber," J. Appl. Phys., Vol. 108, Aug. 2010.

    14. Schuring, D., J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science, Vol. 314, 977-980, Nov. 2006.

    15. Watts, C., X. Liu, and W. J. Padilla, "Metamaterial electromagnetic wave absorbers," Adv. Mat., Vol. 24, OP98, 2012.
    doi:10.1002/adma.201200674

    16. Pozar, D. M., Microwave Engineering, 2nd Ed., John Wiley & Sons, 1999, ISBN 0471170968.

    17. Padilla, W. J., M. T. Aronsson, C. Highstrete, and M. Lee, "Electrically resonant terahertz metamaterials: Theoretical and experimental investigations," Phys. Rew. Lett. B, Vol. 75, 2007.

    18. Schuring, D., J. J. Mock, and D. R. Smith, "Electric-field-coupled resonators for negative permittivity metamaterials," Appl. Phys. Lett., Vol. 88, 2006.