Vol. 35

Latest Volume
All Volumes
All Issues
2012-10-19

Applying Effective Medium Theory in Characterizing Dielectric Constant of Solids

By Sucheng Li, Ruirui Chen, Shahzad Anwar, Weixin Lu, Yun Lai, Huanyang Chen, Bo Hou, Fengran Ren, and Bangming Gu
Progress In Electromagnetics Research Letters, Vol. 35, 145-153, 2012
doi:10.2528/PIERL12072108

Abstract

We present a simple approach to measure the dielectric constant of solid materials. In this approach, the powder for the solid under investigation is mixed with the oil at a specific volume fraction. By measuring the oil and the mixture, the permittivity of the inclusion, i.e. the solid, can be accurately derived from the Maxwell-Garnett effective medium theory. With this method, the strict requirements for the solid shape and surface flatness in the conventional measuring configurations can be waved off, and meanwhile the broadband permittivity can be obtained. This method also enables the permittivity measurement on a level of single particle, in an average sense, for materials in natural powder form. The demonstrations on alumina, glucose, and pearl show this approach is valid and robust.

Citation


Sucheng Li, Ruirui Chen, Shahzad Anwar, Weixin Lu, Yun Lai, Huanyang Chen, Bo Hou, Fengran Ren, and Bangming Gu, "Applying Effective Medium Theory in Characterizing Dielectric Constant of Solids," Progress In Electromagnetics Research Letters, Vol. 35, 145-153, 2012.
doi:10.2528/PIERL12072108
http://test.jpier.org/PIERL/pier.php?paper=12072108

References


    1. Chen, L. F. , C. K. Ong, C. P. Neo, V. V. Varadan, and V. K. Varadan, Microwave Electronics: Measurement and Materials Characterization, John Wiley & Sons, Chichester, 2004.
    doi:10.1002/0470020466

    2. Stuchly, M. A. and S. S. Stuchly, "Coaxial line reflection methods for measuring dielectric properties of biological substances at radio and microwave frequencies --- A review," IEEE Transactions on Instrumentation and Measurement, Vol. 29, 176-183, 1980.
    doi:10.1109/TIM.1980.4314902

    3. Adous, M., P. Queffelec, and L. Laguerre, "Coaxial/cylindrical transition line for broadband permittivity measurement of civil engineering materials," Meas. Sci. Technol., Vol. 17, 2241-2246, 2006.
    doi:10.1088/0957-0233/17/8/026

    4. Skierucha, W. and A. Wilczek, "A FDR sensor for measuring complex soil dielectric permittivity in the 10-500MHz frequency range," Sensors, Vol. 10, 3314-3329, 2010.
    doi:10.3390/s100403314

    5. Pozar, D. M., Microwave Engineering, Ch. 3, John Wiley & Sons, Hoboken, 1998.

    6. Baker-Jarvis, J., "Transmission/reflection and short-circuit line methods," NIST Technical Note 1341, 1990.

    7. Maxwell-Garnett, J. C., "Colours in metal glasses and in metallic films," Phil. Trans. R. Soc. London, Vol. 203, 385-420, 1904.
    doi:10.1098/rsta.1904.0024

    8. Cai, W. and V. M. Shalaev, "Optical Metamaterials: Fundamentals and Applications," Ch. 2, Springer, 2010.

    9. Joannopoulos, J. D. , S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, Princeton University Press, New Jersey, 2008.

    10. Wen, W., X. Huang, S. Yang, K. Lu, and P. Sheng, "The giant electrorheological effect in suspensions of nanoparticles," Nature Materials, Vol. 2, 727-730, 2003.
    doi:10.1038/nmat993

    11. Philip, J., P. D. Shima, and B. Raj, "Nanofluid with tunable thermal properties," Appl. Phys. Lett., Vol. 92, 043108, 2006.
    doi:10.1063/1.2838304

    12. Shima, P. D. and J. Philip, "Tuning of thermal conductivity and rheology of nanofluids using an external stimulus," J. Phys. Chem. C, Vol. 115, 20097-20104, 2011.
    doi:10.1021/jp204827q

    13. Hu, X., C. T. Chan, J. Zi, M. Li, and K. M. Ho, "Diamagnetic response of metallic photonic crystals at infrared and visible frequencies," Phys. Rev. Lett., Vol. 96, 223901, 2006.
    doi:10.1103/PhysRevLett.96.223901

    14. Gao, Y., J. P. Huang, Y. M. Liu, L. Gao, K. W. Yu, and X. Zhang, "Optical negative refraction in ferrofluids with magnetocontrollablility," Phys. Rev. Lett., Vol. 104, 034501, 2010.
    doi:10.1103/PhysRevLett.104.034501

    15. Tao, H., et al., "Metamaterials on paper as a sensing platform Advanced Materials,", Vol. 23, 3197-3201, 2011.

    16. Wada, S., H. Yasuno, T. Hoshina, S. M. Nam, H. Kakemoto, and T. Tsurumi, "Preparation of nm-sized barium titanate fine particles and their powder dielectric properties," Jpn. J. Appl. Phys., Vol. 42, 6188-6195, 2003.
    doi:10.1143/JJAP.42.6188

    17. Hung, D. S., P. C. Chiang, C. W. Lee, C. S. Ho, S. H. Chieng, and Y. D. Yao, "Observation of effective permittivity of water-dispersible FePt nanoparticles at microwave frequencies," IEEE Transactions on Magnetics, Vol. 43, 879-881, 2007.
    doi:10.1109/TMAG.2006.888488