In this paper, a waveguide filter using miniaturized-element frequency selective surface (FSS) is presented. The proposed FSS is composed of periodic array of metallic patches separated by small gaps and metallic lines. The array of patches constitutes a capacitive surface and the lines a coupled inductive surface, which together act as a resonant structure. At about 5.0 GHz, a narrow bandpass response is designed. Dimensions of the FSS element are much smaller than the operating wavelength, which is less than 1/13λ. For this miniaturized element, grating lobes are restrained and do not appear event to 25 GHz. Moreover, the FSS has stable performances for various incident angles. Design procedure and measurement results of the FSS are presented and discussed.
2. Wu, T. K., "Frequency Selective Surfaces and Grid Arrays," Wiley, 1995.
3. Winkler, S. A., W. Hong, M. Bozzi, and K. Wu, "Polarization rotating frequency selective surface based on substrate integrated waveguide technology," IEEE Trans. on Antennas and Propag., Vol. 58, No. 4, 1202-1213, 2010.
doi:10.1109/TAP.2010.2041170
4. Kiani, G. I., K. L. Ford, K. P. Esselle, A. R. Weily, and C. J. Panagamuwa, "Oblique incidence performance of a novel frequency selective surface absorber," IEEE Trans. on Antennas and Propag., Vol. 55, No. 10, 2931-2934, 2007.
doi:10.1109/TAP.2007.905980
5. Sarabandi, K. and N. Behdad, "A frequency selective surface with miniaturized elements," IEEE Trans. on Antennas and Propag., Vol. 55, No. 5, 1239-1245, 2007.
doi:10.1109/TAP.2007.895567
6. Moallem, M. and K. Sarabandi, "Miniaturized-element frequency selective surfaces for millimeter-wave to terahertz applications," IEEE Trans. on Terahertz Science Tech., Vol. 2, No. 3, 333-339, 2012.
doi:10.1109/TTHZ.2012.2189910
7. Monavar, F. M. and N. Komjani, "Bandwidth enhancement of microstrip patch antenna using Jerusalem cross-shaped frequency selective surface by invasive weed optimization approach," Progress In Electromagnetics Research, Vol. 121, 103-120, 2011.
doi:10.2528/PIER11051305
8. Su, J., X.-W. Xu, M. He, and K. Zhang, "Integral-equation analysis of frequency selective surface using Ewald transformation and lattice symmetry," Progress In Electromagnetics Research, Vol. 121, 249-269, 2011.
doi:10.2528/PIER11081902
9. Islam, S., J. Stiens, G. Poesen, R. Vounckx, J. Peeters, I. Bogaert, D. de Zutter, and W. de Raedt, "Simulation and experimental verification of W-band finite frequency selective surfaces on infinite background with 3D full wave solver NSPWMLFMA," Progress In Electromagnetics Research, Vol. 101, 189-202, 2010.
doi:10.2528/PIER09122104
10. Martinez-Lopez, R., J. Rodriguez-Cuevas, A. E. Martynyuk, and J. I. Martinez Lopez, "An active ring slot with RF Mems switchable radial stubs for reconfigurable frequency selective surface applications," Progress In Electromagnetics Research, Vol. 128, 419-440, 2012.
11. Raspopoulos, M. and S. Stavrou, "Frequency selective buildings through frequency selective surfaces," IEEE Trans. on Antennas and Propag., Vol. 59, No. 8, 2998-3005, 2011.
doi:10.1109/TAP.2011.2158779
12. Zhou, H., et al., "Ultra-wideband frequency selective surface," Electron. Lett., Vol. 48, No. 1, 11-13, 2012.
doi:10.1049/el.2011.3271
13. Pelton, E. L. and B. A. Munk, "A streamlined metallic radome," IEEE Trans. on Antennas and Propag., Vol. 22, No. 6, 799-803, 1974.
doi:10.1109/TAP.1974.1140896
14. Zhou, H., S. Qu, B. Lin, J. Wang, H. Ma, and Z. Xu, "Filter-antenna consisting of conical FSS radome and monopole antenna," IEEE Trans. on Antennas and Propag., Vol. 60, No. 6, 3040-3045, 2012.
doi:10.1109/TAP.2012.2194648
15. Yuan, Y., X.-H. Wang, and H. Zhou, "Dual-band frequency selective surface with miniaturized element in low frequencies," Progress In Electromagnetics Research Letters, Vol. 33, 167-175, 2012.
16. Luebbers, R. J. and B. A. Munk, "Some effects of dielectric loading on periodic slot arrays," IEEE Trans. on Antennas and Propag., Vol. 26, No. 4, 536-542, 1978.
doi:10.1109/TAP.1978.1141887
17. Baena, J. D., L. Jelinek, R. Marques, J. J. Mock, J. Gollub, and D. R. Smith, "Isotropic frequency selective surfaces made of cubic resonators," Appl. Phys. Lett., Vol. 91, 191105, 2007.
doi:10.1063/1.2806915
18. Wakabayashi, H., M. Kominami, H. Kusaka, and H. Nakashima, "Numerical simulations for frequency-selective screens with complementary elements," IEE Pro. --- Micro. Antennas Propag., Vol. 141, No. 6, 477-482, 1994.
doi:10.1049/ip-map:19941322
19. Lockyers, D. S., J. C. Vardaxpglou, and R. A. Simpkin, "Complementary frequency selective surfaces," IEE Pro. --- Micro. Antennas Propag., Vol. 147, No. 6, 501-507, 2000.
doi:10.1049/ip-map:20000799
20. Pous, R. and D. M. Pozar, "A frequency-selective surface using coupled microstrip patches," IEEE Trans. on Antennas and Propag., Vol. 39, No. 12, 1763-1769, 1991.
doi:10.1109/8.121598
21. Tamijani, A. A., K. Sarabandi, and G. M. Rebeiz, "Antenna-filter-antenna arrays as a class of bandpass frequency-selective surfaces," IEEE Trans. on Microw. Theory and Tech., Vol. 52, No. 8, 1781-1789, 2004.
doi:10.1109/TMTT.2004.831572
22. Behdad, N., M. A.-Joumayly, and M. Salehi, "A low-profile third-order bandpass frequency selective surface," IEEE Trans. on Antennas and Propag., Vol. 57, No. 2, 460-466, 2009.
doi:10.1109/TAP.2008.2011202
23. Al-Joumayly, M. and N. Behdad, "A new technique for design of low-profile, second-order, band-pass frequency selective surfaces," IEEE Trans. on Antennas and Propag., Vol. 57, No. 2, 452-459, 2009.
doi:10.1109/TAP.2008.2011382
24. Al-Joumayly, M/ and N. Behdad, "A generalized method for synthesizing low-profile, band-pass frequency selective surfaces with non resonant constituting elements," IEEE Trans. on Antennas and Propag., Vol. 58, No. 12, 4033-4041, 2010.
doi:10.1109/TAP.2010.2078474
25. Luo, G. Q., et al., "Theory and experiment of novel frequency selective surface based on substrate integrated waveguide technology," IEEE Trans. on Antennas and Propag., Vol. 53, No. 12, 4035-4043, Dec. 2005.
doi:10.1109/TAP.2005.860010
26. Luo, G. Q., W. Hong, Q. H. Lai, K. Wu, and L. L. Sun, "Design and experimental verification of compact frequency-selective surface with quasi-elliptic bandpass response," IEEE Trans. on Microw. Theory and Tech., Vol. 55, No. 12, 2481-2487, 2007.
doi:10.1109/TMTT.2007.910085
27. Luo, G. Q. , W. Hong, H. J. Tang, J. X. Chen, and L. L. Sun, "Triband frequency selective with periodic cell perturbation," IEEE Microw. Wireless Compon. Lett., Vol. 17, No. 6, 2007.
doi:10.1109/LMWC.2007.897793
28. Parker, E. A. and A. N. A. EI Sheikh, "Convoluted array elements and reduced size unit cells for frequency selective," IEE Pro. --- Micro. Antennas Propag., Vol. 138, No. 1, 19-22, 1991.
doi:10.1049/ip-h-2.1991.0004
29. Parker, E. A., A. N. A. EI Sheikh, and A. C. de C. Lima, "Convoluted frequency-selective array elements derived from linear and crossed dipoles," IEE Pro. --- Micro. Antennas Propag., Vol. 140, No. 5, 378-380, 1993.
doi:10.1049/ip-h-2.1993.0060
30. Sanz-lzquierdo, B., E. A. Parker, J.-B. Roberson, and J. C. Batchelor, "Singly and dual polarized convoluted frequency selective structures," IEEE Trans. on Antennas and Propag., Vol. 58, No. 3, 690-696, 2010.
doi:10.1109/TAP.2009.2039321