Vol. 37

Latest Volume
All Volumes
All Issues
2013-02-18

Sensitivity Modulation of Surface Plasmon Resonance Sensor Configurations in Optical Fiber Waveguide

By Sushil Kumar, Gaurav Sharma, and Vivek Singh
Progress In Electromagnetics Research Letters, Vol. 37, 167-176, 2013
doi:10.2528/PIERL12122801

Abstract

The reflectivity of three layer and four layer optical fiber based surface plasmon resonance sensors having silica material substrate and chalcogenide material substrate is plotted and studied. Using the transfer matrix method, the reflection coefficient for p-polarized incident lights at various wavelengths is obtained. It is observed that the sensitivity, detection accuracy and quality parameters of the sensor having silica substrates are much larger than the chalcogenide substrates. These parameters can also be increased by introducing an additional thin layer of silica/chalcogenide material on the metallic surface. Also, these sensor parameters are highly affected by the thickness of the additional thin layer.

Citation


Sushil Kumar, Gaurav Sharma, and Vivek Singh, "Sensitivity Modulation of Surface Plasmon Resonance Sensor Configurations in Optical Fiber Waveguide," Progress In Electromagnetics Research Letters, Vol. 37, 167-176, 2013.
doi:10.2528/PIERL12122801
http://test.jpier.org/PIERL/pier.php?paper=12122801

References


    1. Liedberg, B., C. Nylander, and I. Lunstrom, "Surface plasmon resonance for gas detection and biosensing," Sensors and Actuators, Vol. 4, 299-304, 1983.
    doi:10.1016/0250-6874(83)85036-7

    2. Otto, A., "Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection," Zeitschrift fur Physik, Vol. 216, 398-410, 1968.
    doi:10.1007/BF01391532

    3. Kretschmann, E. and H. Reather, "Radiative decay of non-radiative surface plasmons excited by light," Zeitschrift fur Naturforschung, Vol. 23, 2135-2136, 1968.

    4. Gent-Van, J., et al., "Optimization of a chemooptical surface plasmon resonance based sensor," Applied Optics, Vol. 29, 2843-2849, 1990.
    doi:10.1364/AO.29.002843

    5. Stenberg, E., B. Persson, H. Roos, and C. Urbaniczky, "Quantitative determination of surface concentration of protein with surface plasmon resonance using radio labelled proteins," Journal of Colloid and Interface Science, Vol. 143, No. 2, 513-526, 1991.
    doi:10.1016/0021-9797(91)90284-F

    6. Chiang, H. P., et al., "Effects of temperature on the surface plasmon resonance at a metal semiconductor interface," Thin Solid Films, Vol. 515, No. 17, 6953-6961, 2007.
    doi:10.1016/j.tsf.2007.02.034

    7. Le Person, J., et al., "Surface plasmon resonance in chalcogenide glass-based optical system," Sensors and Actuators B, Vol. 130, No. 2, 771-776, 2008.
    doi:10.1016/j.snb.2007.10.067

    8. Jorgenson, R. C., S. S. Yee, and , "A fiber-optic chemical sensor based on surface plasmon resonance," Sensors and Actuators B, Vol. 12, No. 3, 213-220, 1993.
    doi:10.1016/0925-4005(93)80021-3

    9. Lin, W. B., N. Jaffrezic-Renault, A. Gagnaire, and H. Gagnaire, "The effects of polarization of the incident light-modelling and analysis of a SPR multimode optical fiber sensor," Sensors and Actuators A, Vol. 84, No. 3, 198-204, 2000.
    doi:10.1016/S0924-4247(00)00345-9

    10. Gentleman, D. J., L. A. Obando, J.-F. Masson, J. R. Holloway, and K. S. Booksh, "Calibration of fiber optic based surface plasmon resonance sensors in aqueous systems," Analytica Chimica Acta, Vol. 515, No. 2, 291-302, 2004.
    doi:10.1016/j.aca.2004.03.061

    11. Kim, Y. C., W. Peng, S. Banerji, and K. S. Booksh, "Tapered fiber optic surface plasmon resonance sensor for analyses of vapor and liquid phases," Optics Letters, Vol. 30, No. 17, 2218-2220, 2005.
    doi:10.1364/OL.30.002218

    12. Gupta, B. D. and A. K. Sharma, "Sensitivity evaluation of a multi-layered surface plasmon resonance-based fiber optic sensor: A theoretical study," Sensors and Actuators B, Vol. 107, No. 1, 40-46, 2005.
    doi:10.1016/j.snb.2004.08.030

    13. Patskovsky, S., A. V. Kabashin, and M. Meunier, "Properties and sensing characteristics of surface plasmon resonance in infrared light," J. Opt. Soc. Am. A, Vol. 20, No. 8, 1644-1650, 2003.
    doi:10.1364/JOSAA.20.001644

    14. Bureau, B., X. H. Zhang, F. Smektala, J. L. Adam, J. Troles, H.-L. Ma, C. Boussard-Pl'edel, J. Lucas, P. Lucas, D. Le Coq, M. R. Riley, and J. H. Simmons, "Recent advances in chalcogenide glasses," J. Non-Cryst. Solids, Vol. 345-346, 276-283, 2004.
    doi:10.1016/j.jnoncrysol.2004.08.096

    15. Le Person, J., F. Colas, C. Compere, M. Lehaitre, M.-L. Anne, C. Boussard-Pledel, B. Bureau, J. L. Adam, S. Deputier, and M. Guilloux-Viry, "Surface plasmon resonance in chalcogenide glass-based optical system," Sensors and Actuators B, Vol. 130, 771-776, 2008.
    doi:10.1016/j.snb.2007.10.067

    16. Nicolas, H. O., M. C. Phillips, H. Qiao, P. J. Allen, K. Krishnaswami, J. R. Brian, L. M. Tanya, and C. A. Norman Jr., "Single mode low-loss chalcogenide glassware guide for mid-infrared," Optics Letters, Vol. 31, 1860-1862, 2006.

    17. Kanso, M., S. Cuenot, and G. Louarn, "Sensitivity of optical fiber sensor based on Surface Plasmon resonance: Modeling and experiments," Plasmonics, Vol. 3, 49-57, 2008.
    doi:10.1007/s11468-008-9055-1