Vol. 41

Latest Volume
All Volumes
All Issues
2013-07-26

A FSS with Stable Performance Under Large Incident Angles

By Tao Ma, Hang Zhou, Yuan Yang, and Bo Liu
Progress In Electromagnetics Research Letters, Vol. 41, 159-166, 2013
doi:10.2528/PIERL13061703

Abstract

In this paper, we propose a novel frequency selective surface (FSS) with stable performance under large incident angles. The FSS is composed of hexagon metallic lines and hexagon patches. Using such a hexagon arrangement, the periodicity size could be miniaturized and thus the FSS unit cell is compact. The composite FSS has an excellent stability under large incident angles. In the passband 10.58-11.06 GHz, the insertion loss is still less than -1 dB for both TE and TM polarizations, even under incident angle up to 85 degree. Both the design procedure and experimental results of the novel FSS are presented and discussed.

Citation


Tao Ma, Hang Zhou, Yuan Yang, and Bo Liu, "A FSS with Stable Performance Under Large Incident Angles," Progress In Electromagnetics Research Letters, Vol. 41, 159-166, 2013.
doi:10.2528/PIERL13061703
http://test.jpier.org/PIERL/pier.php?paper=13061703

References


    1. Munk, B. A., Frequency Selective Surfaces: Theory and Design, Wiley, New York, 2000.
    doi:10.1002/0471723770

    2. Yuan, Y., H. Zhou, X.-H. Wamg, and Y. Mi, "Low-pass frequency selective surface with wideband high-stop response for shipboard radar," Journal of Electromagnetic Waves and Applications,, Vol. 27, No. 1, 117-122, 2013.
    doi:10.1080/09205071.2013.739547

    3. Martinez-Lopez, R., J. Rodriguez-Cuevas, A. E. Martynyuk, and J. I. Martinez Lopez, "An active ring slot with RF MEMs switchable radial stubs for reconfigurable frequency selective surface applications," Progress In Electromagnetics Research, Vol. 128, 419-440, 2012.

    4. Pelton, E. L. and B. A. Munk, "A streamlined metallic radome," IEEE Trans. Antennas Propag., Vol. 22, No. 6, 799-803, Nov. 1974.
    doi:10.1109/TAP.1974.1140896

    5. Zhou, H., S. Qu, B. Lin, J. Wang, H. Ma, and Z. Xu, "Filter-antenna consisting of conical FSS radome and monopole antenna," IEEE Trans. Antennas Propag., Vol. 60, No. 6, 3040-3045, 2012.
    doi:10.1109/TAP.2012.2194648

    6. Luebbers, R. J. and B. A. Munk, "Some effects of dielectric loading on periodic slot arrays," IEEE Trans. Antennas Propag., Vol. 26, No. 4, 536-542, 1978.
    doi:10.1109/TAP.1978.1141887

    7. Baena, J. D., L. Jelinek, R. Marques, J. J. Mock, J. Gollub, and D. R. Smith, "Isotropic frequency selective surfaces made of cubic resonators," Appl. Phys. Lett., Vol. 91, No. 19, 191105, 2007.
    doi:10.1063/1.2806915

    8. Wakabayashi, H., M. Kominami, H. Kusaka, and H. Nakashima, "Numerical simulations for frequency-selective screens with complementary elements," IEE Pro. --- Micro. Antennas Propag., Vol. 141, No. 6, 477-482, 1994.
    doi:10.1049/ip-map:19941322

    9. Lockyer, D. S., J. C. Vardaxoglou, and R. A. Simpkin, "Complementary frequency selective surfaces," IEE Pro. Micro. Antennas Propag., Vol. 147, No. 6, 501-507, 2000.
    doi:10.1049/ip-map:20000799

    10. Sarabandi, K. and N. Behdad, "A frequency selective surface with miniaturized elements," IEEE Trans. Antennas Propag., Vol. 55, No. 5, 1239-1245, 2007.
    doi:10.1109/TAP.2007.895567

    11. Bayatpur, F. and K. Sarabandi, "Miniaturized FSS and patch antenna array coupling for angle-independent, high-order spatial filtering," IEEE Microw. Wireless Compon. Lett., Vol. 20, No. 2, 79-81, 2010.
    doi:10.1109/LMWC.2009.2038517

    12. Moallem, M. and K. Sarabandi, "Miniaturized-element frequency selective surfaces for millimeter-wave to Terahertz applications," IEEE Trans. Terahertz Science Tech., Vol. 2, No. 3, 333-339, 2012.
    doi:10.1109/TTHZ.2012.2189910

    13. Parker, E. A. and A. N. A. EI Sheikh, "Convoluted array elements and reduced size unit cells for frequency selective," IEE Pro. --- Micro. Antennas Propag., Vol. 138, No. 1, 19-22, 1991.
    doi:10.1049/ip-h-2.1991.0004

    14. Sanz-lzquierdo, B., E. A. Parker, J.-B. Roberson, and J. C. Batchelor, "Singly and dual polarized convoluted frequency selective structures," IEEE Trans. Antennas Propag., Vol. 58, No. 3, 690-696, 2010.
    doi:10.1109/TAP.2009.2039321

    15. Zheng, S. F., Y. Z. Yin, H. L. Zheng, Z. Y. Liu, and A. F. Sun, "Convoluted and interdigitated hexagon loop unit cells for frequency selective surfaces," Electron. Lett., Vol. 47, No. 4, 233-235, 2011.
    doi:10.1049/el.2010.7407

    16. Luo, G. Q., et al., "Theory and experiment of novel frequency selective surface based on substrate integrated waveguide technology," IEEE Trans. Antennas Propag., Vol. 53, No. 12, 4035-4043, Dec. 2005.
    doi:10.1109/TAP.2005.860010

    17. Luo, G. Q., W. Hong, Q. H. Lai, K. Wu, and L. L. Sun, "Design and experimental verification of compact frequency-selective surface with quasi-elliptic bandpass response," IEEE Trans. Microw. Theory Tech., Vol. 55, No. 12, 2481-2487, 2007.
    doi:10.1109/TMTT.2007.910085