Vol. 42

Latest Volume
All Volumes
All Issues
2013-08-25

On the Use of Metal Gratings to Reduce Diffraction from a Finite Ground Plane in Circularly-Polarized Microstrip Arrays

By Adrianus Bernardus Smolders, Rob M. C. Mestrom, Abolghasem Zamanifekri, and Ad C. F. Reniers
Progress In Electromagnetics Research Letters, Vol. 42, 65-78, 2013
doi:10.2528/PIERL13070203

Abstract

It is shown that metal gratings can be used to improve the cross polarization of circularly-polarized aperture-coupled microstrip antennas. The metal gratings reduce edge diffraction from the finite-size grounded dielectric slab on which the antennas are printed. The edge diffraction is due to surface waves that can propagate in the grounded dielectric slab. The design of the metal grating is based on an analytical model, which results in a first-order estimation for the design of the metal grating structure. The model provides physical insight and appears to be accurate enough for the application. Using this model, a prototype was developed, consisting of a circularly-polarized 2×2 microstrip array with associated feeding network. Measurements show that the axial ratio can be reduced down to 1.75 dB within the beam width of the antenna.

Citation


Adrianus Bernardus Smolders, Rob M. C. Mestrom, Abolghasem Zamanifekri, and Ad C. F. Reniers, "On the Use of Metal Gratings to Reduce Diffraction from a Finite Ground Plane in Circularly-Polarized Microstrip Arrays," Progress In Electromagnetics Research Letters, Vol. 42, 65-78, 2013.
doi:10.2528/PIERL13070203
http://test.jpier.org/PIERL/pier.php?paper=13070203

References


    1. Dell, J., "The maritime market: VSAT rules," SatMagazine, 30-34, Dec. 2008, available on-line: www.satmagazine.com.

    2. Adrian, A. and D. H. Schaubert, "Dual aperture-coupled microstrip antenna for dual or circular polarization," Electronics Letters, Vol. 23, No. 23, 1226-1228, 1987.
    doi:10.1049/el:19870854

    3. Targonski, S. D. and D. M. Pozar, "Design of wideband circularly polarized aperture-coupled microstrip antennas," IEEE Transactions on Antennas and Propagation, Vol. 41, No. 2, 214-220, 1993.
    doi:10.1109/8.214613

    4. Huang, J., "A technique for an array to generate circular polarization with linearly polarized elements," IEEE Transactions on Antennas and Propagation, Vol. 34, No. 9, 1113-1124, Sep. 1986.
    doi:10.1109/TAP.1986.1143953

    5. Hall, P. S., J. Huang, E. Rammos, and A. Roederer, "Gain of circularly polarized arrays composed of linearly polarized elements," Electronics Letters, Vol. 25, No. 2, 124-125, 1989.
    doi:10.1049/el:19890091

    6. Smolders, A. B. and U. Johannsen, "Axial ratio enhancement for circularly-polarized millimeter-wave phased-arrays using a sequential rotation technique," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 9, 3465-3469, 2011.
    doi:10.1109/TAP.2011.2161443

    7. Baggen, L., S. Holzwarth, W. Simon, and O. Litschke, "Phased array using the sequential rotation principle: Analysis of coupling effects," IEEE International Symposium on Phased Array Systems and Technology, 571-576, Oct. 14-17, 2003.

    8. Pawlak, H. and A. F. Jacob, "An external calibration scheme for DBF antenna arrays," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 1, 59-67, Jan. 2010.
    doi:10.1109/TAP.2009.2036195

    9. Smolders, A. B., R. M. C. Mestrom, A. C. F. Reniers, and M. Geurts, "A shared aperture dual-frequency circularly polarized microstrip array antenna," IEEE Antennas and Wireless Technology Letters (AWPL), Vol. 12, 120-123, 2013.
    doi:10.1109/LAWP.2013.2242427

    10. Llombart, N., A. Neto, G. Gerini, and P. de Maagt, "Planar circularly symmetric EBG structures for reducing surface waves in antennas," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 10, 3210-3218, 2005.
    doi:10.1109/TAP.2005.856365

    11. Bolt, R. J., D. J. Bekers, N. Llombart, A. Neto, and G. Gerini, "Application of EBG structures at sub-array level," Proc. of the 36th European Microwave Conference, 1052-1055, Sep. 2006.

    12. Rahman, M. and M. A. Stuchly, "Circularly polarised patch antenna with periodic structure," IEE Proceedings - Microwaves, Antennas and Propagation, Vol. 149, No. 3, 141-146, 2002.
    doi:10.1049/ip-map:20020392

    13. Zheng, B. and Z. Shen, "Effect of a finite ground plane on circularly polarized microstrip antennas," IEEE International Symposium on Antennas and Propagation, Vol. 2A, 238-241, Jul. 3-8, 2005.

    14. Das, N. K. and A. Mohanty, "Infinite array of printed dipoles integrated with a printed strip grating for suppression of cross-polar radiation. I. Rigorous analysis," IEEE Transactions on Antennas and Propagation, Vol. 45, No. 6, 960-972, 1997.
    doi:10.1109/8.585743

    15. Sigelmann, R. A. and A. Ishimaru, "Radiation from periodic structures excited by an aperiodic source," IEEE Transactions on Antennas and Propagation, Vol. 13, No. 3, 354-364, 1965.
    doi:10.1109/TAP.1965.1138437

    16. Sigelmann, R. A., "Surface waves on a grounded dielectric slab covered by a periodically slotted conducting plane," IEEE Transactions on Antennas and Propagation, Vol. 15, No. 5, 672-676, 1967.
    doi:10.1109/TAP.1967.1139010

    17. Bellamine, F. H. and E. F. Kuester, "Guided waves along a metal grating on the surface of a grounded dielectric slab," IEEE Transactions on Microwave Theory and Techniques, Vol. 42, No. 7, 1190-1197, 1994.
    doi:10.1109/22.299756

    18. Kaganovsky, Y. and R. Shavit, "Analysis of radiation from a line source in a grounded dielectric slab covered by a metal strip grating," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 1, 135-143, 2009.
    doi:10.1109/TAP.2008.2009667

    19. Jacobsen, J., "Analytical, numerical, and experimental investigation of guided waves on a periodically strip-loaded dielectric slab," IEEE Transactions on Antennas and Propagation, Vol. 18, No. 3, 379-388, 1970.
    doi:10.1109/TAP.1970.1139696

    20. Maci, S., M. Casaletti, M. Caiazzo, and A. Cucini, "Dispersion analysis of printed periodic structures by using a pole-zero network synthesis," 17th International Conference on Applied Electromagnetics and Communications, ICECom 2003, 300-303, 2003.
    doi:10.1109/ICECOM.2003.1291013

    21. Guglielmi, M. and H. Hochstadt, "Multimode network description of a planar periodic metal-strip grating at a dielectric interface.III. Rigorous solution ," IEEE Transactions on Microwave Theory nd Techniques, Vol. 37, No. 5, 902-909, 1989.
    doi:10.1109/22.17458

    22. Sande, H. V., H. de Gersem, F. Henrotte, and K. Hameyer, "Solving nonlinear magnetic problems using Newton trust region methods," IEEE Transactions on Microwave Theory and Techniques, Vol. 39, No. 3, 1709-1712, 2003.

    23. Hirtenfelder, F. and G. Lubkowski, "3D field simulations using FI time domain technique of wedge- and parabolic-shaped left handed materials (LHM)," International Workshop on Antenna Technology (IWAT), 259-262, 2007.