Vol. 44

Latest Volume
All Volumes
All Issues
2013-12-04

The Design of a Novel Compact Ultra-Wideband (UWB) Power Divider

By Long Xiao, Hao Peng, and Tao Yang
Progress In Electromagnetics Research Letters, Vol. 44, 43-46, 2014
doi:10.2528/PIERL13111205

Abstract

The design of a compact coplanar power divider with novel structure is presented by making a full use of the theories of microstrip-to-slotline transition. To obtain two in-phase signals over a wide frequency range, the two output branches are placed in the same layer. Moreover, a half-wavelength slotline is employed to expand the working frequency range. The presented compact power divider shows a low insertion and good return loss performance at input port. The simulated and measured results have shown a good agreement over the frequency range 2.2 GHz-11 GHz.

Citation


Long Xiao, Hao Peng, and Tao Yang, "The Design of a Novel Compact Ultra-Wideband (UWB) Power Divider," Progress In Electromagnetics Research Letters, Vol. 44, 43-46, 2014.
doi:10.2528/PIERL13111205
http://test.jpier.org/PIERL/pier.php?paper=13111205

References


    1. Wilkinson, E. J., "An N-way hybrid power divider," IEEE Trans. Microw. Theory and Tech., Vol. 8, No. 1, 116-118, 1960.
    doi:10.1109/TMTT.1960.1124668

    2. Zhou, B., H. Wang, and W.-X. Sheng, "A modified UWB Wilkinson power divider using delta stub ," Progress In Electromagnetics Research Letters, Vol. 19, 49-55, 2010.

    3. Wong, S.-W. and L. Zhu, "Ultra-wideband power divider with good in-band splitting and isolation performances," IEEE Microw. Wireless Compon. Lett., Vol. 18, No. 8, 518-520, 2008.
    doi:10.1109/LMWC.2008.2001009

    4. Chang, L., C. Liao, L.-L. Chen, W. B. Lin, X. Zheng, and Y.-L. Wu, "Design of an ultra-wideband power divider via the coarse-grained parallel microgenetic algorithm," Progress In Electromagnetics Research, Vol. 124, 425-440, 2012.
    doi:10.2528/PIER11120517

    5. Chiang, C. T. and B. K. Chung, "Ultra wideband power divider using tapered line," Progress In Electromagnetics Research, Vol. 106, 61-73, 2010.
    doi:10.2528/PIER10061603

    6. Zhuge, C.-L., K.-J. Song, and Y. Fan, "Ultra-wideband (UWB) power divider based on signal interference techniques," Microw. Opt. Tech. Lett., Vol. 54, No. 4, 1028-1030, 2012.
    doi:10.1002/mop.26745

    7. Deng, , P.-H., , J.-H. Guo, and W.-C. Kuo, "New Wilkinson power dividers based on compact stepped-impedance transmission lines and shunt open stubs," Progress In Electromagnetics Research, Vol. 123, 407-426, 2012.
    doi:10.2528/PIER11111612

    8. Sedighy, S. H. and M. Khalaj-Amirhosseini, "Compact Wilkinson power divider using stepped impedance transmission lines," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 13, 1773-1782, 2011.
    doi:10.1163/156939311797453980

    9. Bialkowski, M. E. and A. M. Abbosh, "Design of a compact UWB out-of-phase power divider," IEEE Microw. Wireless Compon. Lett., Vol. 17, No. 4, 289-291, 2007.
    doi:10.1109/LMWC.2007.892979

    10. Bialkowski, M. E., A. M. Abbosh, and N. Seman, "Compact microwave six-port vector voltmeters for ultra-wideband applications," IEEE Trans. Microw. Theory and Tech., Vol. 55, No. 10, 2216-2223, 2007.
    doi:10.1109/TMTT.2007.906539

    11. Peng, H., Z. Q. Yang, Y. Liu, T. Yang, and K. Tan, "An improved UWB non-coplanar power," divider," Progress In Electromagnetics Research, Vol. 138, 31-39, 2013.

    12. Song, K. J. and Q. Xue, "Novel ultra-wideband (UWB) multilaye slotline power divider with bandpass response," IEEE Microw. Wireless Compon. Lett., Vol. 20, No. 1, 13-15, 2010.
    doi:10.1109/LMWC.2009.2035951

    13. Abbosh, A. M., "Multilayer inphase power divider for UWB applications," Microw. Opt. Tech. Lett., Vol. 50, No. 5, 1402-1405, 2008.
    doi:10.1002/mop.23379

    14. Zinieris, M. M., R. Sloan, and L. E. Davis, "A broadband microstrip-to-slot-line transition," Microw. Opt. Tech. Lett., Vol. 18, No. 5, 339-342, 1998.
    doi:10.1002/(SICI)1098-2760(19980805)18:5<339::AID-MOP9>3.0.CO;2-9

    15. Schuppert, B., "Microstrip/Slotline transitions: Modeling and experimental investigation," IEEE Trans. Microw. Theory and Tech., Vol. 36, No. 8, 1272-1282, 1988.
    doi:10.1109/22.3669