Vol. 47

Latest Volume
All Volumes
All Issues

Electromagnetically Induced Absorption in Metamaterials in the Infrared Frequency

By Sharhabeel Alyones
Progress In Electromagnetics Research Letters, Vol. 47, 19-24, 2014


In this paper, the author studies, through numerical simulation, the classical analog of the electromagnetically induced absorption/reflection (EIA) in a planar metamaterial structure in the near infrared spectral region. The structure is designed by transforming an electromagnetically induced transparency (EIT) structure into an EIA structure using Babinet's principle. The structure exhibits a coupling between a bright mode (a complementary ring resonator (CRR)) and a dark mode (pair of parallel straight slits) imprinted on a glass substrate. A narrow absorption window, induced in a wide transparent window, is achieved by the structure and the strength of coupling is tuned by the degree of breaking symmetry and relative displacement of the two mode elements.


Sharhabeel Alyones, "Electromagnetically Induced Absorption in Metamaterials in the Infrared Frequency," Progress In Electromagnetics Research Letters, Vol. 47, 19-24, 2014.


    1. Fleischhauer, M., A. Imamoglu, and J. P. Marangos, "Electromagnetically induced transparency: Optics in coherent media," Rev. Mod. Phys., Vol. 77, No. 2, 633-673, 2005.

    2. Boller, K. J., A. Imamolu, and S. E. Harris, "Observation of electromagnetically induced transparency," Phys. Rev. Lett., Vol. 66, No. 20, 2593-2596, 1991.

    3. Hau, L. V., S. E. Harris, Z. Dutton, and C. H. Behroozi, "Light speed reduction to 17 meters per second in an ultracold atomic gas," Nature, Vol. 397, No. 6720, 594-598, 1999.

    4. Liu, C., Z. Dutton, C. H. Behroozi, and L. V. Hau, "Observation of coherent optical information storage in an atomic medium using halted light pulses," Nature, Vol. 409, No. 6819, 490-493, 2001.

    5. Phillips, D. F., A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, "Storage of light in atomic vapor," Phys. Rev. Lett., Vol. 86, No. 5, 783-786, 2001.

    6. Anker, J. N., W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. van Duyne, "Biosensing with plasmonic nanosensors," Nat. Mater., Vol. 7, No. 6, 442-453, 2008.

    7. Liu, N., T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sonnichsen, and H. Giessen, "Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing," Nano Lett., Vol. 10, No. 4, 1103-1107, 2010.

    8. C» etin, A. E., A. Artar, M. Turkmen, A. A. Yanik, and H. Altug, "Plasmon induced transparency in cascaded π-shaped metamaterials," Optics Express, Vol. 19, No. 23, 22607-22618, 2011.

    9. Jin, X.-R., J. Park, H. Zheng, S. Lee, Y. Lee, J. Y. Rhee, K. W. Kim, H. S. Cheong, and W. H. Jang, "Highly-dispersive transparency at optical frequencies in planar metamaterials based on two-bright-mode coupling," Optics Express, Vol. 19, No. 22, 21652-21657, 2011.

    10. Li, Z., Y. Ma, R. Huang, R. Singh, J. Gu, Z. Tian, J. Han, and W. Zhang, "Manipulating the plasmon-induced transparency in terahertz metamaterials," Optics Express, Vol. 19, No. 9, 8912-8919, 2011.

    11. Lu, Y., J. Y. Rhee, W. H. Jang, and Y. P. Lee, "Active manipulation of plasmonic electromagnetically-induced transparency based on magnetic plasmon resonance," Optics Express, Vol. 18, No. 20, 20912-20917, 2010.

    12. Xu, H., Y. Lu, Y. P. Lee, and B. S. Ham, "Studies of electromagnetically induced transparency in metamaterials," Optics Express, Vol. 18, No. 17, 17736-17747, 2010.

    13. Dong, Z.-G., H. Liu, M.-X. Xu, T. Li, S.-M. Wang, S.-N. Zhu, and X. Zhang, "Plasmonically induced transparent magnetic resonance in a metallic metamaterial composed of asymmetric double bars," Optics Express, Vol. 18, No. 17, 18229-18234, 2010.

    14. Zhang, J., S. Xiao, C. Jeppesen, A. Kristensen, and N. A. Mortensen, "Electromagnetically induced transparency in metamaterials at near-infrared frequency," Optics Express, Vol. 18, No. 16, 17187-17192, 2010.

    15. Al-Naib, I. A. I., C. Jansen, and M. Koch, "High Q-factor metasurfaces based on miniaturized asymmetric single split resonators," Appl. Phys. Lett., Vol. 94, 153505, 2009.

    15. Al-Naib, I. A. I., C. Jansen, and M. Koch, "Applying the Babinet principle to asymmetric resonators," Electron. Lett., Vol. 44, 1228, 2008.

    17. CST microwave studio, Sonnet Software Inc., , http://www.CST.com.