Vol. 47

Latest Volume
All Volumes
All Issues
2014-06-16

Electromagnetically Induced Absorption in Metamaterials in the Infrared Frequency

By Sharhabeel Alyones
Progress In Electromagnetics Research Letters, Vol. 47, 19-24, 2014
doi:10.2528/PIERL14050501

Abstract

In this paper, the author studies, through numerical simulation, the classical analog of the electromagnetically induced absorption/reflection (EIA) in a planar metamaterial structure in the near infrared spectral region. The structure is designed by transforming an electromagnetically induced transparency (EIT) structure into an EIA structure using Babinet's principle. The structure exhibits a coupling between a bright mode (a complementary ring resonator (CRR)) and a dark mode (pair of parallel straight slits) imprinted on a glass substrate. A narrow absorption window, induced in a wide transparent window, is achieved by the structure and the strength of coupling is tuned by the degree of breaking symmetry and relative displacement of the two mode elements.

Citation


Sharhabeel Alyones, "Electromagnetically Induced Absorption in Metamaterials in the Infrared Frequency," Progress In Electromagnetics Research Letters, Vol. 47, 19-24, 2014.
doi:10.2528/PIERL14050501
http://test.jpier.org/PIERL/pier.php?paper=14050501

References


    1. Fleischhauer, M., A. Imamoglu, and J. P. Marangos, "Electromagnetically induced transparency: Optics in coherent media," Rev. Mod. Phys., Vol. 77, No. 2, 633-673, 2005.
    doi:10.1103/RevModPhys.77.633

    2. Boller, K. J., A. Imamolu, and S. E. Harris, "Observation of electromagnetically induced transparency," Phys. Rev. Lett., Vol. 66, No. 20, 2593-2596, 1991.
    doi:10.1103/PhysRevLett.66.2593

    3. Hau, L. V., S. E. Harris, Z. Dutton, and C. H. Behroozi, "Light speed reduction to 17 meters per second in an ultracold atomic gas," Nature, Vol. 397, No. 6720, 594-598, 1999.
    doi:10.1038/17561

    4. Liu, C., Z. Dutton, C. H. Behroozi, and L. V. Hau, "Observation of coherent optical information storage in an atomic medium using halted light pulses," Nature, Vol. 409, No. 6819, 490-493, 2001.
    doi:10.1038/35054017

    5. Phillips, D. F., A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, "Storage of light in atomic vapor," Phys. Rev. Lett., Vol. 86, No. 5, 783-786, 2001.
    doi:10.1103/PhysRevLett.86.783

    6. Anker, J. N., W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. van Duyne, "Biosensing with plasmonic nanosensors," Nat. Mater., Vol. 7, No. 6, 442-453, 2008.
    doi:10.1038/nmat2162

    7. Liu, N., T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sonnichsen, and H. Giessen, "Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing," Nano Lett., Vol. 10, No. 4, 1103-1107, 2010.
    doi:10.1021/nl902621d

    8. C» etin, A. E., A. Artar, M. Turkmen, A. A. Yanik, and H. Altug, "Plasmon induced transparency in cascaded π-shaped metamaterials," Optics Express, Vol. 19, No. 23, 22607-22618, 2011.
    doi:10.1364/OE.19.022607

    9. Jin, X.-R., J. Park, H. Zheng, S. Lee, Y. Lee, J. Y. Rhee, K. W. Kim, H. S. Cheong, and W. H. Jang, "Highly-dispersive transparency at optical frequencies in planar metamaterials based on two-bright-mode coupling," Optics Express, Vol. 19, No. 22, 21652-21657, 2011.
    doi:10.1364/OE.19.021652

    10. Li, Z., Y. Ma, R. Huang, R. Singh, J. Gu, Z. Tian, J. Han, and W. Zhang, "Manipulating the plasmon-induced transparency in terahertz metamaterials," Optics Express, Vol. 19, No. 9, 8912-8919, 2011.
    doi:10.1364/OE.19.008912

    11. Lu, Y., J. Y. Rhee, W. H. Jang, and Y. P. Lee, "Active manipulation of plasmonic electromagnetically-induced transparency based on magnetic plasmon resonance," Optics Express, Vol. 18, No. 20, 20912-20917, 2010.
    doi:10.1364/OE.18.020912

    12. Xu, H., Y. Lu, Y. P. Lee, and B. S. Ham, "Studies of electromagnetically induced transparency in metamaterials," Optics Express, Vol. 18, No. 17, 17736-17747, 2010.
    doi:10.1364/OE.18.017736

    13. Dong, Z.-G., H. Liu, M.-X. Xu, T. Li, S.-M. Wang, S.-N. Zhu, and X. Zhang, "Plasmonically induced transparent magnetic resonance in a metallic metamaterial composed of asymmetric double bars," Optics Express, Vol. 18, No. 17, 18229-18234, 2010.
    doi:10.1364/OE.18.018229

    14. Zhang, J., S. Xiao, C. Jeppesen, A. Kristensen, and N. A. Mortensen, "Electromagnetically induced transparency in metamaterials at near-infrared frequency," Optics Express, Vol. 18, No. 16, 17187-17192, 2010.
    doi:10.1364/OE.18.017187

    15. Al-Naib, I. A. I., C. Jansen, and M. Koch, "High Q-factor metasurfaces based on miniaturized asymmetric single split resonators," Appl. Phys. Lett., Vol. 94, 153505, 2009.
    doi:10.1063/1.3122147

    15. Al-Naib, I. A. I., C. Jansen, and M. Koch, "Applying the Babinet principle to asymmetric resonators," Electron. Lett., Vol. 44, 1228, 2008.
    doi:10.1049/el:20082507

    17. CST microwave studio, Sonnet Software Inc., , http://www.CST.com.