A novel dual-band filter based on substrate integrated waveguide (SIW) is presented in this paper. The proposed filter is composed of two filters with different center frequencies and bandwidths, where they share the input and output ports with source-load coupling using rectangular SIW cavity structure. Muliti-transmission zeros have been obtained through electrical coupling between the source and load, which improves the frequency-selective characteristics of the filter greatly. Finally, a Ku-band substrate integrated waveguide dual-band filter with bandwidths of 220 MHz and 120 MHz was finally designed, fabricated, and measured. The measurement results are found to be in good agreement with the simulation results.
2. Tsa, L. C. and C. W. Hsue, "Dual band bandpass filters using equal-length coupled-serial-shunted lines and Z-transform technique," IEEE Transactions on Microwave Theory and Techniques, Vol. 52, No. 4, 1111-1117, 2004.
doi:10.1109/TMTT.2004.825680
3. Lee, J., M. S. Uhm, and I. B. Yom, "A dual-passband filter of canonical structure for satellite applications," IEEE Microwave and Wireless Components Letters, Vol. 14, No. 6, 271-273, 2004.
doi:10.1109/LMWC.2004.828026
4. Lenoir, P., et al., "Synthesis and design of asymmetrical dual-band bandpass filters based on equivalent network simplification," IEEE Transactions on Microwave Theory and Techniques, Vol. 54, No. 7, 3090-3097, 2006.
doi:10.1109/TMTT.2006.877037
5. Velazquez-Ahumada, M. D. C., J. Martel-Villagr, F. Medina, and F. Mesa, "Application of stub loaded folded stepped impedance resonators to dual band filter design," Progress In Electromagnetics Research, Vol. 102, 107-124, 2010.
doi:10.2528/PIER10011406
6. Lee, C. H., I. C. Wang, and C. I. G. Hsu, "Dual-band balanced BPF using quarter wavelength stepped-impedance resonators and folded feed lines," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 17-18, 2441-2449, 2009.
7. Weng, M.-H., S.-K. Liu, H.-W. Wu, and C.-H. Hung, "A dual-band bandpass filter having wide and narrow bands simultaneously using multilayered stepped impedance resonators," Progress In Electromagnetics Research Letters, Vol. 13, 139-147, 2010.
doi:10.2528/PIERL10022401
8. Macchiarella, G. and S. Tamiazzo, "Design techniques for dual-passband filters," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, No. 11, 3265-3271, 2005.
doi:10.1109/TMTT.2005.855749
9. Lee, C. H., C. I. G. Hsu, and C. C. Hsu, "Balanced dual-band BPF with stub-loaded SIRs for common-mode suppression," IEEE Microwave and Wireless Components Letters, Vol. 20, No. 2, 70-72, 2010.
doi:10.1109/LMWC.2009.2038433
10. Liu, X., L. Katehi, and D. Peroulis, "Novel dual-band microwave filter using dual-capacitively-loaded cavity resonators," IEEE Microwave and Wireless Components Letters, Vol. 20, No. 11, 610-612, 2010.
doi:10.1109/LMWC.2010.2059696
11. Huang, T. H., C. S. Chang, and H. J. Chen, "Simple method for a K-band SIW filter with dual-mode quasi-elliptic function response," Microwave and Optical Technology Letters, Vol. 49, No. 6, 1246-1248, 2007.
doi:10.1002/mop.22465
12. Zhang, X. C., et al., "C-band half mode substrate integrated waveguide ( HMSIW) filter," Microwave and Optical Technology Letters, Vol. 50, No. 2, 275-277, 2008.
doi:10.1002/mop.23064
13. Chen, J., B. Wu, L. W. Jiang, and C. H. Liang, "A compact hexagonal dual-band substrate integrated waveguide filter based on extracted-pole technque," Microwave and Optical Technology Letters, Vol. 53, No. 3, 562-564, 2011.
doi:10.1002/mop.25799
14. Chen, X. P., K. Wu, and Z. L. Li, "Dual-band and triple-band substrate integrated waveguide filters with chebyshev and quasi-elliptic responses," IEEE Transactions on Microwave Theory and Techniques, Vol. 55, No. 12, 2569-2578, 2007.
doi:10.1109/TMTT.2007.909603
15. Dong, Y. and T. Itoh, "Miniaturized dual-band substrate integrated waveguide filters using complementary split-ring resonators," IEEE MTT-S International Microwave Symposium Digest (MTT), 1-4, Baltimore, MD, USA, 2011.
16. Dong, Y., C.-T. M. Wu, and T. Itoh, "Miniaturised multi-band substrate integrated waveguide filters using complementary split-ring resonators," IET Microw. Antennas Propag., Vol. 6, No. 6, 611-620, 2012.
doi:10.1049/iet-map.2011.0448
17. Chu, Y. C. and Y. S. Cheng, "A simple and effective method for microstrip dual-band filters design," IEEE Microwave and Wireless Components Letters, Vol. 16, No. 5, 246-248, 2006.
doi:10.1109/LMWC.2006.873584
18. Cameron, R. J., "Advanced coupling matrix synthesis techniques for microwave filters," IEEE Transactions on Microwave Theory and Techniques, Vol. 51, No. 1, 1-10, 2003.
doi:10.1109/TMTT.2002.806937
19. Cassivi, Y., L. Perregrini, P. Arcioni, M. Bressan, K. Wu, and G. Conciauro, "Dispersion characteristics of substrate integrated rectangular waveguide," IEEE Microwave and Wireless Components Letters, Vol. 12, No. 9, 333-335, 2002.
doi:10.1109/LMWC.2002.803188
20. Hong, J. S. and M. J. Lancaster, Microstrip Filters for RF/Microwave Application, Wiley, New York, 2001.
doi:10.1002/0471221619