Vol. 47

Latest Volume
All Volumes
All Issues
2014-07-21

Two Uniform Linear Arrays for Non-Coherent and Coherent Sources for Two Dimensional Source Localization

By Muhammad Omer, Nizar Tayem, and Ahmed Abul Hussain
Progress In Electromagnetics Research Letters, Vol. 47, 31-39, 2014
doi:10.2528/PIERL14051903

Abstract

This paper presents a novel method for the two-dimensional direction of arrival (DOA) estimation based on QR decomposition. A configuration with two uniform linear antenna arrays (ULA) is employed for the joint estimation of elevation (θ) and azimuth (φ) angles. Q data matrix will estimate the azimuth angle while R data matrix will estimate the elevation angle. The proposed method utilizes only a single snapshot of the received data and constructs a Toeplitz data matrix. This reduces the computational complexity of the proposed method to O((N+1)2) from O(N3) for SVD based methods. The structure of the data matrix also favors the 2D DOA estimation for both coherent and non-coherent source signals. Simulation results are presented, and performance of the proposed method is compared with the Matrix Pencil method for 2D DOA estimation of multiple incident source signals.

Citation


Muhammad Omer, Nizar Tayem, and Ahmed Abul Hussain, "Two Uniform Linear Arrays for Non-Coherent and Coherent Sources for Two Dimensional Source Localization," Progress In Electromagnetics Research Letters, Vol. 47, 31-39, 2014.
doi:10.2528/PIERL14051903
http://test.jpier.org/PIERL/pier.php?paper=14051903

References


    1. Schmidt, R., "Multiple emitter location and signal parameter estimation," IEEE Trans. Antennas Propagation, Vol. 34, No. 3, 276-280, Mar. 1986.
    doi:10.1109/TAP.1986.1143830

    2. Roy, R., "ESPRIT --- Estimation of signal parameters via rotational invariance techniques,", Ph.D. Dissertation, Stanford University, 1987.

    3. Pillai, S. U. and B. H. Kwon, "Forward/backward smoothing techniques for coherent signal identification," IEEE Trans. Acoust., Speech, Signal Process., Vol. 37, 8-15, 1989.
    doi:10.1109/29.17496

    4. Du, W. X. and R. L. Kirlin, "Improved spatial smoothing techniques for DOA estimation of coherent signals," IEEE Trans. Signal Process., Vol. 39, 1208-1210, 1991.
    doi:10.1109/78.80975

    5. Krekel, P. and E. Deprettere, "A two-dimensional version of the matrix pencil method to solve the DOA problem," European Conference on Circuit Theory and Design, 435-439, 1989.

    6. Yin, Q., R. Newcomb, and L. Zou, "Estimation 2-D angles of arrival via parallel linear array," 1989 International Conference on Acoustics, Speech, and Signal Processing, Vol. 4, 2803-2806, 1989.
    doi:10.1109/ICASSP.1989.267051

    7. Sakarya, F. A. and M. H. Hayes, "Estimation 2-D DOA using nonlinear array configurations," IEEE Trans. Signal Process., Vol. 43, 2212-2216, Sep. 1995.
    doi:10.1109/78.414789

    8. Wu, Y., G. Liao, and H. C. So, "A fast algorithm for 2-D direction-of-arrival estimation," Signal Processing, Vol. 83, 1827-1831, 2003.
    doi:10.1016/S0165-1684(03)00118-X

    9. Tayem, N. and H. Kwon, "L-shape-2-D arrival angle estimation with propagator method," IEEE Trans. Antennas Propagation, Vol. 53, 1622-1630, 2005.
    doi:10.1109/TAP.2005.846804

    10. Zhang, X., X. Gao, and W. Chen, "Improved blind 2D-direction of arrival estimation with L-shaped array using shift invariance property," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 5, 593-606, 2009.
    doi:10.1163/156939309788019859

    11. Gershman, A. B., M. Rubsamen, and M. Pesavento, "One- and two-dimensional direction-of-arrival estimation: An overview of search-free techniques," Signal Processing, Vol. 90, 1338-1349, 2010.
    doi:10.1016/j.sigpro.2009.12.008

    12. Zhang, X., J. Li, and L. Xu, "Novel two-dimensional DOA estimation with L-shaped arra," EURASIP Journal on Advances in Signal Processing, Article ID 490289, 10 Pages, 2011.

    13. Wang, G., J. Xin, N. Zheng, and A. Sano, "Computationally efficient subspace-based method for two-dimensional direction estimation with L-shaped array," IEEE Trans. Signal Process., Vol. 59, No. 7, 3197-3212, 2011.
    doi:10.1109/TSP.2011.2144591

    14. Gu, J.-F., P. Wei, and H.-M. Tai, "2-D direction-of-arrival estimation of coherent signals using cross-correlation matrix," Signal Processing, Vol. 88, 75-85, 2008.
    doi:10.1016/j.sigpro.2007.07.013

    15. Wang, G., J. Xin, N. Zheng, and A. Sano, "Two-dimensional direction estimation of coherent signals with two parallel uniform linear arrays," IEEE Statistical Signal Processing Conference, 28-30, Jun. 2011.

    16. Palanisamy, P., P. N. Kalyanasundaram, and P. M. Swetha, "Two-dimensional DOA estimation of coherent signals using acoustic vector sensor array," Signal Processing, Vol. 92, 19-28, 2012.
    doi:10.1016/j.sigpro.2011.05.021

    17. Bojanczyk, A. W., R. B. Brent, and F. B. de Hoog, "QR factorization of toeplitz matrices," Numerical Math, Vol. 49, 81-94, 1986.
    doi:10.1007/BF01389431

    18. Golub, G. H. and C. F. Van Loan, Matrix Computations, Johns Hopkins University Press, Baltimore, MD, 1983.

    19. Hua, Y. and T. K. Sarkar, "Matrix pencil method for estimating parameters of exponentially damped/undamped sinusoids in noise," IEEE Trans. Acoust., Speech, Signal Process., Vol. 38, 814-824, 1990.
    doi:10.1109/29.56027