Vol. 48

Latest Volume
All Volumes
All Issues
2014-08-08

Tailoring the Properties of Photonic Nanojets by Changing the Material and Geometry of the Concentrator

By Abdul Khaleque and Ziyuan Li
Progress In Electromagnetics Research Letters, Vol. 48, 7-13, 2014
doi:10.2528/PIERL14052108

Abstract

Some microobjects can concentrate an incoming incident plane wave and create the socalled photonic nanojets. These highly focused emerging beams have a high intensity and can be used in applications such as microscopy, beam manipulation and imaging. In this article, it is shown that an adequate choice of geometric shape and material can lead to an improvement of the electric field enhancement capability of nanojets by a factor of 40%.

Citation


Abdul Khaleque and Ziyuan Li, "Tailoring the Properties of Photonic Nanojets by Changing the Material and Geometry of the Concentrator," Progress In Electromagnetics Research Letters, Vol. 48, 7-13, 2014.
doi:10.2528/PIERL14052108
http://test.jpier.org/PIERL/pier.php?paper=14052108

References


    1. Choi, S. J., K. Djordjev, and J. Dapkus, "Microdisk lasers vertically coupled to output waveguides," IEEE Phot. Technol. Lett., Vol. 15, 1330-1332, 2003.
    doi:10.1109/LPT.2003.817990

    2. Fujita, M., A. Sakai, and T. Baba, "Ultra-small and ultra-low threshold microdisk laser — Design, fabrication, lasing characteristics and spontaneous emission factor," IEEE J. Sel. Top. Quantum Electron., Vol. 5, 673-681, 1999.
    doi:10.1109/2944.788434

    3. Seassal, C., C. Monat, J. Mouette, E. Touraille, B. Ben Bhakir, H. T. Hattori, J. L. Leclercq, X. Letartre, P. Rojo-Romeo, and P. Viktorovitc, "InP bonded membrane photonic components and circuits: Towards 2.5 dimensional micro-nano-photonics," IEEE J. Sel. Top. in Quantum Electron., Vol. 11, 395-407, 2005.
    doi:10.1109/JSTQE.2005.845621

    4. Levi, A. F. J., R. E. Slusher, S. L. McCall, J. L. Glass, S. J. Pearton, and R. A. Logan, "Directional light coupling from microdisk lasers," Appl. Phys. Lett., Vol. 62, 561-563, 1993.
    doi:10.1063/1.108911

    5. Park, H. G., J. K. Hwang, J. Huh, H. Y. Ryu, S. H. Kim, and Y. H. Lee, "Characteristics of modified single-defect two-dimensional photonic crystal lasers," IEEE J. Quantum Electron., Vol. 38, 1353-1365, 2002.
    doi:10.1109/JQE.2002.802951

    6. Loncar, M. and A. Scherer, "Photonic crystal laser sources for chemical detection," Appl. Phys. Lett., Vol. 82, 4648-4650, 2003.
    doi:10.1063/1.1586781

    7. Hattori, H. T., I. McKerracher, H. H. Tan, C. Jagadish, and R. M. De La Rue, "In-plane coupling of light from InP based photonic crystal band-edge lasers into single-mode waveguides," IEEE J. Quantum Electron., Vol. 43, 279-286, 2007.
    doi:10.1109/JQE.2006.890402

    8. Yokohama, M. and S. Noda, "Finite-difference time-domain simulation of two-dimensional photonic crystal surface emitting laser," Opt. Express, Vol. 13, 2869-2880, 2005.
    doi:10.1364/OPEX.13.002869

    9. Hattori, H. T., X. Letartre, C. Seassal, P. Rojo-Romeo, J. L. Leclercq, and P. Viktorovitch, "Analysis of hybrid photonic crystal vertical cavity surface emitting lasers," Opt. Express, Vol. 11, 1799-1808, 2003.
    doi:10.1364/OE.11.001799

    10. Hill, M. T., M. Marell, E. S. P. Leong, B. Smallbrugge, Y. Zhu, M. Sun, P. J. Van Veldhoven, E. J. Geluk, F. Karouta, Y. S. Oei, R. Notzel, C. Z. Ning, and M. K. Smit, "Lasing in metalinsulator-metal sub-wavelength plasmonic waveguides," Opt. Express, Vol. 17, 11107-11112, 2009.
    doi:10.1364/OE.17.011107

    11. Stockman, M. I., "Spaser action, loss compensation and stability in plasmonic systems with gain," Phys. Rev. Lett., Vol. 106, 156802, 2011.
    doi:10.1103/PhysRevLett.106.156802

    12. Cubukcu, E., N. Yu, E. J. Smythe, L. Diehl, K. B. Crozier, and F. Capasso, "Plasmonic laser antennas and related devices," IEEE J. Sel. Top. in Quantum Electron., Vol. 14, 1448-1461, 2008.
    doi:10.1109/JSTQE.2007.912747

    13. Hattori, H. T., Z. Li, D. Liu, I. D. Rukhlenko, and M. Premaratne, "Coupling of light from microdisk lasers into plasmonic nano-antennas," Opt. Express, Vol. 17, 20878-20884, 2009.
    doi:10.1364/OE.17.020878

    14. Ball, G. A. and W. M. Morey, "Continuously tunable single-mode erbium fiber laser," Opt. Letters, Vol. 19, 1979-1981, 1994.
    doi:10.1364/OL.19.001979

    15. Zyskind, J. L., V. Mizrahi, D. J. Di Giovanni, and J. W. SUlhoff, "Short single frequency erbiumdoped fibre laser," Electron. Lett., Vol. 28, 1385-1387, 1992.
    doi:10.1049/el:19920881

    16. Agrawal, G. P. and S. Radic, "Phase-shifted fiber Bragg grating and their applications for wavelength demultiplexing," IEEE Phot., Technol. Lett., Vol. 6, 995-997, 1994.
    doi:10.1109/68.313074

    17. Cazo, R. M., O. Lisboa, H. T. Hattori, V. M. Schneider, C. L. Barbosa, R. C. Rabelo, and J. L. S. Ferreira, "Experimental analysis of reflected modes in a multimode strained grating," Microw. and Opt. Technol. Lett., Vol. 28, 4-8, 2001.
    doi:10.1002/1098-2760(20010105)28:1<4::AID-MOP2>3.0.CO;2-1

    18. Oullette, F., "All-fiber filter for efficient dispersion compensation," Opt. Letters, Vol. 16, 303-305, 1991.
    doi:10.1364/OL.16.000303

    19. Hattori, H. T., V. M. Schneider, and O. Lisboa, "Cantor set fiber Bragg grating," J. of Opt. Soc. America A, Vol. 17, 1583-1589, 2000.
    doi:10.1364/JOSAA.17.001583

    20. Barcelos, S., M. N. Zervas, and . I. Laming, "Characteristics of chirped fiber gratings for dispersion compensation," Opt. Fiber Technol., Vol. 1, 213-215, 1996.
    doi:10.1006/ofte.1996.0026

    21. Archambault, J. L., P. S. Russell, S. Barcelos, P. Hua, and L. Reekie, "Grating frustrated coupler: A novel channel-dropping filter in single-mode optical fiber," Opt. Letters, Vol. 19, 180-182, 1994.
    doi:10.1364/OL.19.000180

    22. Tailaert, D., W. Bogaerts, P. Bienstman, T. F. Krausss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, "An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers," IEEE J. Quantum Electron., Vol. 38, 949-955, 2002.
    doi:10.1109/JQE.2002.1017613

    23. Heifetz, A., S. C. Kong, A. V. Sahakian, A. Taflove, and V. Backman, "Photonic nanojets," J. Comput. Theor. Nanosci., Vol. 6, 1979-1992, 2009.
    doi:10.1166/jctn.2009.1254

    24. Ferrand, P., J. Wenger, A. Devilez, M. Pianta, B. Stout, N. Bonod, E. Popov, and H. Rigneault, "Direct imaging of photonic nanojets," Opt. Express, Vol. 16, 6930-6940, 2008.
    doi:10.1364/OE.16.006930

    25. Heifetz, A., K. Huang, A. V. Sahakian, X. Li, A. Taflove, and V. Backman, "Experimental confirmation of backscattering enhancement induced by a photonic jet," Appl. Phys. Lett., Vol. 89, 221118, 2006.
    doi:10.1063/1.2398907

    26. Fletcher, D. A., K. E. Goodson, and G. S. Kino, "Focusing in microlenses close to a wavelength in diameter," Opt. Letters, Vol. 26, 399-401, 2001.
    doi:10.1364/OL.26.000399

    27. Chen, Z., A. Taflove, and V. Backman, "Photonic nanojet enhancement of backscattering of light by nanoparticles: A potential novel visible-light ultramicroscopy technique," Opt. Express, Vol. 12, 1214-1220, 2004.
    doi:10.1364/OPEX.12.001214

    28. Li, X., Z. Chen, A. Taflove, and V. Backman, "Optical analysis of nanoparticles via enhanced backscattering facilitated by 3-D photonic nanojets," Opt. Express, Vol. 13, 526-533, 2005.
    doi:10.1364/OPEX.13.000526

    29. Kim, M. S., T. Scharf, S. Muhlig, C. Rockstuhl, and H. P. Herzig, "Engineering photonic nanojets," Opt. Express, Vol. 19, 10206-10220, 2011.
    doi:10.1364/OE.19.010206

    30. Yi, K. J., H. Wang, Y. F. Lu, and Z. Y. Yang, "Enhanced Raman scattering by self-assembled silica spherical microparticles," J. of Appl. Phys., Vol. 101, 063528, 2007.
    doi:10.1063/1.2450671

    31. Le Ru, E. C., E. Blackie, M. Meyer, and P. G. Etchegoin, "Surface enhanced Raman scattering enhancement factors: A comprehensive study," J. Phys. Chem. C, Vol. 111, 13794-13803, 2007.
    doi:10.1021/jp0687908

    32. Banaee, M. G. and K. B. Crozier, "Gold nanorings as substrate for surface-enhanced Raman scattering," Opt. Letters, Vol. 35, 760-762, 2010.
    doi:10.1364/OL.35.000760

    33. Li, Z., H. T. Hattori, P. Parkinson, J. Tian, L. Fu, H. H. Tan, and C. Jagadish, "A plasmonic staircase nano-antenna device with strong electric field enhancement for surface enhanced Raman scattering (SERS) applications," J. Phys. D: Appl. Phys., Vol. 45, 305102, 2012.
    doi:10.1088/0022-3727/45/30/305102

    34. Ashok, P. C., G. P. Singh, K. M. Tan, and K. Dholakia, "Fiber probe based microfluidic raman spectroscopy," Opt. Express, Vol. 18, 7642-7649, 2010.
    doi:10.1364/OE.18.007642

    35. Ju, D., H. Pei, Y. Jiang, and X. Sun, "Controllable and enhanced nanojet effects excited by surface plasmon polariton," Appl. Phys. Lett., Vol. 102, 171109, 2013.
    doi:10.1063/1.4802958

    36. Fullwave 6.0 RSOFT Design Group, 1999, .
    doi:10.1063/1.4802958

    37. Udagedara, I., M. Premaratne, I. D. Rukhlenko, H. T. Hattori, and G. P. Agrawal, "Unified PML for FDTD modelling of dispersive optical materials," Opt. Express, Vol. 17, 21179-21190, 2009.
    doi:10.1364/OE.17.021179

    38. Maier, S. A., Plasmonics: Fundamentals and Applications, Springer, New York, 2007.

    39. Rakic, A. D., A. B. Djurisic, J. M. Elazar, and M. L. Majewski, "Optical properties of metallic films for vertical-cavity optoelectronic devices," Appl. Optics, Vol. 37, 5271-5283, 1998.
    doi:10.1364/AO.37.005271