Vol. 51

Latest Volume
All Volumes
All Issues
2014-12-30

Focusing Properties of Hypergeometric Gaussian Beam through a High Numerical-Aperture Objective

By Ji Peng, Zhengye Shan, Yangsheng Yuan, Zhifeng Cui, Wei Huang, and Jun Qu
Progress In Electromagnetics Research Letters, Vol. 51, 21-26, 2015
doi:10.2528/PIERL14101304

Abstract

The focusing properties of radially polarized hypergeometric Gaussian beam are studied using the Richards-Wolf vectorial diffraction model. Such a polarized beam is decomposed into radial and longitudinal polarization. With a proper combination of the beam order, beam size and imaginary parameter variables, the adjustably confined flat-topped focus and focal hole can be obtained in the focal region. Moreover, we got originality characteristic for the axial intensity distribution of two shaped symmetric light spots. The tight focusing of a hypergeometric Gaussian beam may find applications in data storage, laser drilling, optical trapping, etc.

Citation


Ji Peng, Zhengye Shan, Yangsheng Yuan, Zhifeng Cui, Wei Huang, and Jun Qu, "Focusing Properties of Hypergeometric Gaussian Beam through a High Numerical-Aperture Objective," Progress In Electromagnetics Research Letters, Vol. 51, 21-26, 2015.
doi:10.2528/PIERL14101304
http://test.jpier.org/PIERL/pier.php?paper=14101304

References


    1. Neves, A. R., et al., "Electromagnetic forces for an arbitrary optical trapping of a spherical dielectric," Optics Express, Vol. 14, No. 26, 13101-13106, 2006.
    doi:10.1364/OE.14.013101

    2. Li, X., Y. Cao, and M. Gu, "Superresolution-focal-volume induced 3.0 Tbytes/disk capacity by focusing a radially polarized beam," Opt. Lett., Vol. 36, 2510-2512, 2011.
    doi:10.1364/OL.36.002510

    3. Jeffries, G. D. M., J. S. Edgar, Y. Zhao, J. P. Shelby, C. Fong, and D. T. Chiu, "Using polarization-shaped optical vortex traps for single-cell nanosurgery," Nano. Lett., Vol. 7, 415-420, 2007.
    doi:10.1021/nl0626784

    4. Zhao, Y., J. S. Edgar, G. D. M. Jeffries, D. McGloin, and D. T. Chiu, "Spin-to-orbital angular momentum conversion in a strongly focused optical beam," Phys. Rev. Lett., Vol. 99, 073901, 2007.
    doi:10.1103/PhysRevLett.99.073901

    5. Davis, J. A., D. E. McNamara, D. M. Cottrell, and J. Campos, "Image processing with the radial Hilbert transform: Theory and experiments," Opt. Lett., Vol. 25, 99-101, 2000.
    doi:10.1364/OL.25.000099

    6. Verhagen, E., L. Kuipers, and A. Polman, "Field enhancement in metallic subwavelength aperture arrays probed by erbium upconversion luminescence," Optics Express, Vol. 17, No. 17, 14586-14598, 2009.
    doi:10.1364/OE.17.014586

    7. Valagiannopulos, C. A. and N. L. Tsitsas, "Field enhancement in a grounded dielectric slab by using a single superstrate layer," Advances in OptoElectronics, Vol. 10, 1-9, 2012.
    doi:10.1155/2012/439147

    8. Tsitsas, N. L. and C. A. Valagiannopoulos, "On centrating the electromagnetic power in a grounded dielectric slab excited by an external gaussian beam," International Conference on Mathematical Methods in Electromagnetic Theory, 304-307, 2012.

    9. Valagiannopulos, C. A., "Electromagnetic absorption of gaussian beams by a grounded layered structure," Radioengineering, Vol. 22, No. 1, 333-340, 2013.

    10. Wolf, E., "Electromagnetic diffraction in optical systems. I. An integral representation of the image field," Proc. R. Soc. A, Vol. 253, 349-357, 1959.
    doi:10.1098/rspa.1959.0199

    11. Richards, B. and E. Wolf, "Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system," Proc. R. Soc. A, Vol. 253, 358-379, 1959.
    doi:10.1098/rspa.1959.0200

    12. Dorn, R., S. Quabis, and G. Leuchs, "Sharper focus for a radially polarized light beam," Phys. Rev. Lett., Vol. 91, 233901, 2003.
    doi:10.1103/PhysRevLett.91.233901

    13. Yang, L., X. Xie, S. Wang, and J. Zhou, "Minimized spot of annular radially polarized focusing beam," Opt. Lett., Vol. 38, 1331-1333, 2013.
    doi:10.1364/OL.38.001331

    14. Kitamura, K., K. Sakai, and S. Noda, "Sub-wavelength focal spot with long depth of focus generated by radially polarized, narrow-width annular beam," Optics Express, Vol. 18, 4518-4525, 2010.
    doi:10.1364/OE.18.004518

    15. Kotlyar, V. V., R. V. Skidanov, S. N. Khonina, and V. A. Soifer, "Hypergeometric modes," Opt. Lett., Vol. 32, 742-744, 2007.
    doi:10.1364/OL.32.000742

    16. Karimi, E., G. Zito, B. Piccirillo, L. Marrucci, and E. Santamato, "Hypergeometric-Gaussian modes," Opt. Lett., Vol. 32, 3053-3055, 2007.
    doi:10.1364/OL.32.003053

    17. Kotlyar, V. V., A. A. Kovalev, R. V. Skidanov, S. N. Khonina, and J. Turunen, "Generating hypergeometric laser beams with a diffractive optical element," Appl. Opt., Vol. 47, 6124-6133, 2008.
    doi:10.1364/AO.47.006124

    18. Kotlyar, V. V. and A. A. Kovalev, "Family of Hypergeometric laser beams," J. Opt. Soc. Am. A, Vol. 25, 262-270, 2008.
    doi:10.1364/JOSAA.25.000262

    19. Eyyuboglu, H. T. and Y. Cai, "Hypergeometric Gaussian beam and its propagation in turbulence," Opt. Commun., Vol. 285, 4194-4190, 2012.
    doi:10.1016/j.optcom.2012.07.020

    20. Youngworth, K. and T. Brown, "Focusing of high numerical aperture cylindrical-vector beams," Optics Express, Vol. 7, 77-87, 2000.
    doi:10.1364/OE.7.000077

    21. Zhan, Q. and J. Leger, "Focus shaping using cylindrical vector beams," Optics Express, Vol. 10, 324-331, 2002.
    doi:10.1364/OE.10.000324

    22. Lin, J., Y. Ma, P. Jin, G. Davies, and J. Tan, "Longitudinal polarized focusing of radially polarized sinh-Gaussian beam," Optics Express, Vol. 21, 13193-13198, 2013.
    doi:10.1364/OE.21.013193