Vol. 51

Latest Volume
All Volumes
All Issues

A Simple Nanoscale Plasmonic Square-Shaped Ring Resonator Waveguide

By Ya-Li Yan, Guang Fu, Yu Zhang, Shu-Xi Gong, and Xi Chen
Progress In Electromagnetics Research Letters, Vol. 51, 39-45, 2015


A novel surface plasmon based square-shaped ring resonator with bending metaldielectric-metal input/output (I/O) waveguide at optical spectral range is investigated. The influence of various geometric parameters is studied in detail, with parallel finite difference time domain method. The results validate that vertical coupling disturbance can be efficiently suppressed by employing the modified I/O structure. The transmittance performance has all the resonant frequencies workable with better extinction ratios, higher finesse and higher Q-factors compared to the original plasmonic micro-ring resonator. From these analyses, it is found that the proposed waveguide is outstanding in aspects of the total field extinction and frequency selectivity characteristic.


Ya-Li Yan, Guang Fu, Yu Zhang, Shu-Xi Gong, and Xi Chen, "A Simple Nanoscale Plasmonic Square-Shaped Ring Resonator Waveguide," Progress In Electromagnetics Research Letters, Vol. 51, 39-45, 2015.


    1. Tassin, P., T. Koschny, M. Kafesaki, and C. M. Soukoulis, "A comparison of graphene, superconductors and metals as conductors for metamaterials and plasmonics," Nature Photonics, Vol. 6, No. 4, 259-264, 2012.

    2. Kauranen, M. and A. V. Zayats, "Nonlinear plasmonics," Nature Photonics, Vol. 6, 737-748, 2012.

    3. Politano, A., "Interplay of structural and temperature effects on plasmonic excitations at noblemetal interfaces," Philosophical Magazine, Vol. 92, No. 6, 768-778, 2012.

    4. Politano, A., A. R. Marino, V. Formoso, D. Farias, R. Miranda, and G. Chiarello, "Quadratic dispersion and damping processes of π plasmon in monolayer graphene on Pt(111)," Plasmonics, Vol. 7, No. 2, 369-376, 2012.

    5. Politano, A., V. Formoso, and G. Chiarello, "Collective electronic excitations in thin Ag films on Ni(111)," Plasmonics, Vol. 8, No. 4, 1683-1690, 2013.

    6. Politano, A. and G. Chiarello, "Unravelling suitable graphene-metal contacts for graphene-based plasmonic devices," Nanoscale, Vol. 5, No. 17, 8215-8220, 2013.

    7. Politano, A. and G. Chiarello, "Quenching of plasmons modes in air-exposed graphene-Ru contacts for plasmonic devices," Applied Physics Letters, Vol. 102, No. 20, 201608, 2013.

    8. Yan, H. G., X. S. Li, B. Chandra, G. Tulevski, Y. Q. Wu, M. Freitag, W. J. Zhu, P. Avouris, and F. N. Xia, "Tunable infrared plasmonic devices using graphene/insulator stacks," Nature Nanotechnology, Vol. 7, No. 5, 330, 2012.

    9. Zheludev, N. I., "Photonic-plasmonic devices: A 7-nm light pen makes its mark," Nature Nanotechnology, Vol. 5, No. 1, 10-11, 2010.

    10. Politano, A., "Influence of structural and electronic properties on the collective excitations of Ag/Cu(111)," Plasmonics, Vol. 7, No. 1, 131-136, 2012.

    11. He, X. Y., Q. J. Wang, and S. F. Yu, "Numerical study of gain-assisted terahertz hybrid plasmonic waveguide," Plasmonics, Vol. 7, No. 3, 571-577, 2012.

    12. Okamoto, K., I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, "Surface-plasmon-enhanced light emitters based on InGaN quantum wells," Nature Material, Vol. 3, No. 9, 601-605, 2004.

    13. Reineck, P., G. P. Lee, D. Brick, M. Karg, P. Mulvaney, and U. Bach, "A solid-state plasmonic solar cell via metal nanoparticle self-assembly," Advanced Materials, Vol. 24, No. 35, 2012.

    14. Yao, X. H., M. Tokman, and A. Belyanin, "Efficient nonlinear generation of THz plasmons in graphene and topological insulators," Physical Review Letters, Vol. 112, No. 5, 055501, 2014.

    15. Lu, L., B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechel, X. G. Liang, A. Zettl, Y. R. Shen, and F. Wang, "Graphene plasmonics for tunable terahertz metamaterials," Nature Nanotechnology, Vol. 6, 630-634, 2011.

    16. Takahara, J., S. Yamagishi, H. Taki, A. Morimoto, and T. Kobayashi, "Guiding of a one-dimensional optical beam with nanometer diameter," Optics Letters, Vol. 22, 475-477, 1997.

    17. Djabery, R., S. Nikmehr, and S. Hosseinzadeh, "Grating effects on sidelobe suppression in MIM plasmonic filters," Progress In Electromagnetics Research, Vol. 135, 271-280, 2013.

    18. Liaw, J. W., M. K. Kuo, and C. N. Liao, "Plasmon resonances of spherical and ellipsoidal nanoparticles," Journal of Electromagnetic Waves and Applications, Vol. 19, No. 13, 1787-1794, 2005.

    19. Lee, K. H., I. Ahmed, R. S.M. Goh, E. H. Khoo, E. P. Li, and T. G. G. Hung, "Implementation of the FDTD method based on Lorentz-Drude dispersive model on GPU for plasmonic applications," Progress In Electromagnetics Research, Vol. 116, 441-456, 2011.

    20. Berini, P., "Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of symmetric structures," Physical Review B, Vol. 61, No. 15, 10484-10503, 2000.

    21. Weeber, J. C., A. Dereux, C. Girard, J. R. Krenn, and J. P. Goudonnet, "Plasmon polaritons of metallic nanowires for controlling submicron propagation of light," Physical Review B, Vol. 60, No. 12, 9061-9068, 1999.

    22. Bozhevolnyi, S. I., V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, "Channel plasmon subwavelength waveguide components including interferometers and ring resonators," Nature, Vol. 440, 508-511, 2006.

    23. Veronis, G. and S. Fan, "Modes of subwavelength plasmonic slot waveguides," Journal of Lightwave Technology, Vol. 25, No. 9, 2511-2521, 2007.

    24. Barnes, W. L., A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature, Vol. 424, 824-830, 2003.

    25. Xu, Y., J. Zhang, and G. F. Song, "Slow surface plasmons in plasmonic grating waveguide," IEEE Photonics Technology Letters, Vol. 25, No. 5, 410-413, Jan. 2013.

    26. Song, Y., J.Wang, M. Yan, and M. Qiu, "Efficient coupling between dielectric and hybrid plasmonic waveguides by multimode interference power splitter," Journal of Optics, Vol. 13, 2011.

    27. Hosseini, A. and Y. Massoud, "Nanoscale surface plasmon based resonator using rectangular geometry," Applied Physics Letters, Vol. 90, 181102, 2007.

    28. Liu, J. L., G. Y. Fang, H. F. Zhao, Y. Zhang, and S. T. Liu, "Plasmon flow control at gap waveguide junctions using square ring resonators," Journal of Physics D: Applied Physics, Vol. 43, 055103, 2010.

    29. Veronis, G. and S. Fan, "Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides," Applied Physics Letters, Vol. 83, 131102, 2005.

    30. Chung, S. Y., C. Y. Wang, C. H. Teng, C. P. Chen, and H. C. Chang, "Simulations of dielectric and plasmonic waveguide-coupled ring resonators using the legendre pseudospectral time-domain method," Journal of Lightwave Technology, Vol. 30, No. 11, 1733-1742, 2012.

    31. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite Difference Time Domain Method, 3rd Ed., Artech House, Norwood, MA, 2005.

    32. Lakshmikanthan, V. and D. Trigiante, Theory of Difference Equations: Numerical Methods and Applications, Academic, 1988.

    33. Guiaut, C. and K. Mahdjoubi, "A parallel FDTD algorithm using the MPI library," IEEE Antennas and Propagation Magazine, Vol. 43, 94-103, 2001.

    34. Yu, W., R. Mittra, T. Su, Y. J. Liu, and X. L. Yang, Parallel Finite-difference Time-domain Method, Artech House, 2006.