Sparse representation is the fundamental technology of compressive sensing, sparse three-dimensional (3-D) imaging, and dictionary-based parameter estimation. Typical sparse representation models of radar signal work in the frequency domain, which may encounter high dimension and large data amount of dictionary. This paper presents a time-domain (TD) representation model for multi-aspect SAR data. We generate the multi-aspect two-dimensional (2-D) TD responses of the 3-D scattering center model. Then we cut off the low-energy area of the 2-D TD response and use cutoff responses to construct the dictionary of sparse representation. Such a TD dictionary is a sparse matrix. Moreover, we build and solve the sparse representation model based on the TD dictionary. Compared with the frequency-domain (FD) sparse representation model, the data size of our TD dictionary is remarkably lower, and the solving of TD sparse representation problem is in higher efficiency. We utilize the TD sparse representation to reconstruct 3-D images from multi-aspect SAR data. Experimental results demonstrate the effectiveness and efficiency of the TD sparse representation model.
2. Herman, M. A. and T. Strohmer, "High-resolution radar via compressed sensing," IEEE Trans. Signal Process., Vol. 57, No. 6, 2275-2284, 2009.
doi:10.1109/TSP.2009.2014277
3. Austin, C. D., E. Ertin, and R. L. Moses, "Sparse signal methods for 3D radar imaging," IEEE Journal of Selected Topics in Signal Processing, Vol. 5, No. 3, 408-423, 2011.
doi:10.1109/JSTSP.2010.2090128
4. Bhattacharya, S., T. R. Blumensath, B. Mulgrew, and M. Davies, "Synthetic aperture radar raw data encoding using compressed sensing," Proc. IEEE 2008 Int. Conf. Radar, 1-5, 2008.
5. Austin, C. D., J. N. Ash, and R. L. Moses, "Dynamic dictionary algorithms for model order and parameter estimation," IEEE Trans. Signal Process., Vol. 61, No. 20, 5117-5130, 2013.
doi:10.1109/TSP.2013.2276428
6. Rigling, B. D. and R. L. Moses, "Three-dimensional surface reconstruction from multi-static SAR images," IEEE Trans. Image Process., Vol. 14, No. 8, 1159-1171, 2003.
doi:10.1109/TIP.2005.851690
7. Corporation, H. P., "Sparse representation denoising for radar high-resolution range profiling," Int. J. Antennas Propagat., Vol. 13, No. 1, 479-482, 2014.
8. Zhu, S., A. Mohammad-Djafari, H. Wang, B. Deng, L. Xiang, and J. Mao, "Parameter estimation for SAR micromotion target based on sparse signal representation," EURASIP J. Advances Signal Process., Vol. 13, No. 2, 26-26, 2012.
9. Zhu, X. X. and R. Bamler, "Tomographic SAR inversion by L1-norm regularization: The compressive sensing approach," IEEE Trans. Geosci. Remote Sens., Vol. 48, No. 10, 3839-3846, 2010.
doi:10.1109/TGRS.2010.2048117
10. Potter, L. C., D. M. Chiang, R. Carriere, and J. Gerry, "A GTD-based parametric model for radar scattering," IEEE Trans. Antennas Propagat., Vol. 43, No. 11, 1058-1067, 1995.
doi:10.1109/8.467641
11. Kim, S. J., K. Koh, M. Lustig, S. Boyd, and D. Gorinevsky, "A method for large-scale l1-regularized least squares," IEEE Journal of Selected Topics in Signal Processing, Vol. 1, No. 4, 606-617, 2007.
doi:10.1109/JSTSP.2007.910971
12. http://web.stanford.edu/~boyd/l1_ls/, .