Vol. 55

Latest Volume
All Volumes
All Issues
2015-08-12

Analysis of Numerical Dispersion in the High-Order 2-D WLP-FDTD Method

By Wei-Jun Chen, Jun Quan, and Shi-Yu Long
Progress In Electromagnetics Research Letters, Vol. 55, 7-13, 2015
doi:10.2528/PIERL15051204

Abstract

A theoretical analysis of numerical dispersion in the high-order finite-difference time-domain (FDTD) method with weighted Laguerre polynomials (WLPs) is proposed in this paper. According to the numerical dispersion relation for the two-dimensional (2-D) case, the numerical phase velocities relevant to the direction of wave propagation, grid discretization and time-scale factor are obtained. For a fixed relative error of the numerical phase velocity, the suitable sampling point density and time-scale factor can be determined. Compared with the low-order WLP-FDTD, the high-order one shows its good dispersion characteristics while a low sampling density is used. Three numerical examples are included to validate the effectiveness of the high-order scheme.

Citation


Wei-Jun Chen, Jun Quan, and Shi-Yu Long, "Analysis of Numerical Dispersion in the High-Order 2-D WLP-FDTD Method," Progress In Electromagnetics Research Letters, Vol. 55, 7-13, 2015.
doi:10.2528/PIERL15051204
http://test.jpier.org/PIERL/pier.php?paper=15051204

References


    1. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite-difference Time-domain Method, Artech House, Boston, MA, 2005.

    2. Chung, Y. S., T. K. Sarkar, B. H. Jung, and M. Salazar-Palma, "An unconditionally stable scheme for the finite-difference time-domain method," IEEE Trans. on Microwave Theory and Technique, Vol. 51, No. 3, 697-704, 2003.
    doi:10.1109/TMTT.2003.808732

    3. Duan, Y.-T., B. Chen, and Y. Yi, "Efficient implementation for the unconditionally stable 2-D WLP-FDTD method," IEEE Microw. Wireless Compon. Lett., Vol. 19, No. 11, 677-679, 2007.
    doi:10.1109/LMWC.2009.2031995

    4. Duan, Y. T., B. Chen, D.-G. Fang, and B.-H. Zhou, "Efficient implementation for 3-D Laguerre-based finite-difference time-domain method," IEEE Trans. on Microwave Theory and Technique, Vol. 59, No. 1, 56-64, Jan. 2011.
    doi:10.1109/TMTT.2010.2091206

    5. Chen, Z., Y. T. Duan, Y. R. Zhang, and Y. Yi, "A new efficient algorithm for the unconditionally stable 2-D WLP-FDTD method," IEEE Trans. Antennas Propag., Vol. 61, No. 7, 3712-3720, Jul. 2013.
    doi:10.1109/TAP.2013.2255093

    6. Chen, Z., Y. T. Duan, Y. R. Zhang, H.-L. Chen, and Y. Yi, "A new efficient algorithm for 3-D Laguerre-based finite-difference time-domain method," IEEE Trans. Antennas Propag., Vol. 62, No. 4, 2158-2164, Apr. 2014.
    doi:10.1109/TAP.2014.2298890

    7. He, G.-Q., W. Shao, X.-H. Wang, and B.-Z. Wang, "An efficient domain decomposition Laguerre-FDTD method for two-dimensional scattering problems," IEEE Trans. Antennas Propag., Vol. 61, No. 5, 2639-2645, May 2013.
    doi:10.1109/TAP.2013.2242836

    8. Alighanbari, A. and C. D. Sarris, "An unconditionally stable Laguerre-based S-MRTD time-domain scheme," IEEE Antennas Wireless Propag. Lett., Vol. 5, 69-72, 2006.
    doi:10.1109/LAWP.2006.870364

    9. Profy, F. and Z. Chen, "Efficient mixed-order FDTD using the Laguerre polynomials on non-uniform meshes," IEEE/MTT-S International Microwave Symposium, 1967-1970, Jun. 2007.

    10. Chen, W.-J., W. Shao, J.-L. Li, and B.-Z. Wang, "Numerical dispersion analysis and key parameter selection in Laguerre-FDTD method," IEEE Microw. Wireless Compon. Lett., Vol. 23, No. 12, 629-631, Dec. 2013.
    doi:10.1109/LMWC.2013.2283866

    11. Gustafsson, B., High Order Difference Methods for Time Dependent PDE, Springer, Berlin, Heidelberg, 2008.

    12. Pozar, D. M., Microwave Engineering, 4th Ed., John Wiley, Hamilton, 2012.