In this study, a dumbbell-shaped metamaterial (MTM) antenna has been proposed for dual-band applications using finite difference time domain (FDTD) technique. Such a composite MTM antenna consists of dumbbell-shaped patch, microstrip and partial ground plane. The proposed antenna shows dual-band behavior having impedance bandwidths (|S11| < -10 dB) of 28.5% and 8.7% at 1.72 GHz and 3 GHz respectively. It has been designed to operate at various cellular standards such as GPS, GSM1800 and WCDMA. Design and analysis have been carried out using FDTD code based on uniform meshing and convolutional perfectly matched layer (CPML) absorbing boundary conditions. Further, simulation results have been verified using HFSS, and a prototype has been fabricated to validate the results experimentally. The overall electrical size of the proposed antenna is 0.287λo × 0.346λo × 0.009λo. The proposed dual-band antenna offers excellent radiation characteristics with a gain of 1.2 dBi and 1.5 dBi at 1.72 GHz and 3 GHz respectively with omnidirectional radiation patterns in xz-plane.
2. Waterhouse, R. B., S. D. Targonski, and D. M. Kokotoff, "Design and performance of small printed antennas," IEEE Trans. Antenna Propag., Vol. 46, 1629-1633, 1998.
doi:10.1109/8.736612
3. Waterhouse, R. B., Printed Antennas for Wireless Communication, Wiley-IEEE Press, New York, 2007.
doi:10.1002/9780470512241
4. Caloz, C. and T. Itoh, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications, Wiley-IEEE Press, New York, 2005.
doi:10.1002/0471754323
5. Sharma, S. K. and R. K. Chaudhary, "Dual-band metamaterial-inspired antenna for mobile applications," Microw. Opt. Technology Lett., Vol. 57, 1444-1447, 2015.
doi:10.1002/mop.29113
6. Niu, B. J. and Q. Fang, "Bandwidth enhancement of CPW-fed antenna based on epsilon negativezeroth and first-order resonators," IEEE Antennas and Wireless Propag. Lett., Vol. 12, 1125-1128, 2013.
doi:10.1109/LAWP.2013.2280952
7. Sharma, S. K., A. Gupta, and R. K. Chaudhary, "Compact CPW-fed CHSSR antenna for WLAN," IEEE MTT Int. Microw. and RF Conference (IMaRC), 114-117, Bangalore, India, 2014.
8. Kim, T. G. and B. Lee, "Metamaterial based compact zeroth order resonant antenna," Electronics Lett., Vol. 45, 12-13, 2009.
doi:10.1049/el:20092715
9. Ha, J., K. Kwon, Y. Lee, and J. Choi, "Hybrid mode wideband patch antenna loaded with a planar metamaterial unit cell," IEEE Trans. Antennas and Propag., Vol. 60, 1143-1147, 2012.
doi:10.1109/TAP.2011.2173114
10. Gupta, A., S. K. Sharma, and R. K. Chaudhary, "A compact dual-mode metamaterial-inspired antenna using rectangular-type CSRR," Progress In Electromagnetics Research C, Vol. 57, 35-42, 2015.
doi:10.2528/PIERC15032304
11. Hwang, S. H., T. S. Yang, J. H. Byun, and A. S. Kim, "Design and analysis of metamaterial antenna for mobile handset application," 3rd European Conference on Antennas and Propag., 3563-3566, Berlin, Germany, 2009.
12. Park, J. H., Y. H. Ryu, J. G. Lee, and J. H. Lee, "Epsilon negative zeroth order resonating antenna," IEEE Trans. Antennas and Propag., Vol. 55, 3710-3712, 2007.
doi:10.1109/TAP.2007.910505
13. Yee, K., "Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media," IEEE Trans. Antennas and Propag., Vol. 14, 302-307, 1966.
doi:10.1109/TAP.1966.1138693
14. Elsherbeni, A. Z. and V. Demir, The Finite-difference Time-domain Method for Electromagnetics with MATLAB Simulations, SciTech Pub., Norwood, MA, 2009.
15. Majedi, M. S. and A. R. Attari, "A compact and broadband metamaterial-inspired antenna," IEEE Antennas and Wireless Propag. Lett., Vol. 12, 345-348, 2013.
doi:10.1109/LAWP.2013.2248072