Vol. 57

Latest Volume
All Volumes
All Issues
2015-10-02

The Eikonal Equation for Metamaterials Optics from a Moving Boundary Variational Principle

By Consuelo Bellver-Cebreros and Marcelo Rodriguez-Danta
Progress In Electromagnetics Research Letters, Vol. 57, 23-29, 2015
doi:10.2528/PIERL15073002

Abstract

The eikonal equation for inhomogeneous anisotropic metamaterials with equal relative permittivity and permeability tensors (ε(r) = μ(r)) is derived from a free boundary variational principle. An original approach is proposed considering the wavefront as a moving discontinuity surface in an extended continuous media described by the Lagrangian density of electromagnetic fields. The eikonal equation arises as natural (non prescribed) boundary conditions for variational problems.

Citation


Consuelo Bellver-Cebreros and Marcelo Rodriguez-Danta, "The Eikonal Equation for Metamaterials Optics from a Moving Boundary Variational Principle," Progress In Electromagnetics Research Letters, Vol. 57, 23-29, 2015.
doi:10.2528/PIERL15073002
http://test.jpier.org/PIERL/pier.php?paper=15073002

References


    1. Born, M. and E. Wolf, Principles of Optics, Pergamon Press, New York, 1999.
    doi:10.1017/CBO9781139644181

    2. Landa, L. D. and E. M. Lifshitz, The Classical theory of Fields, 3rd Ed., Vol. 2, Pergamon Press, Oxford, 1971.

    3. Luneburg, R. K., Mathematical Theory of Optics, University of California Press, Berkeley and Los Angeles, 1964.

    4. Elsgolz, L., Differential Equations and the Calculus of Variations, Mir, Moscow, 1977.

    5. Oden, T. J. and J. N. Reddy, "On dual-complementary variational principles in mathematical physics," Int. J. Engng. Sci., Vol. 12, 1-29, 1974.
    doi:10.1016/0020-7225(74)90073-1

    6. Leonhardt, U. and T. G. Philbin, Geometry and Light: The Science of Invisibility, Dover, Mineola, 2010.

    7. Urzhumov, Y. A., N. B. Kundtz, D. R. Smith, and J. B. Pendry, "Cross-section comparison of cloaks designed by transformation optical and optical conformal mapping approaches," Journal of Optics, Vol. 13, 024002, 2011.
    doi:10.1088/2040-8978/13/2/024002

    8. Pendry, J. B., D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science, Vol. 312, No. 5781, 1780-1782, 2006.
    doi:10.1126/science.1125907

    9. Halimeh, J. C. and M. Wegener, "Time-of-flight imaging of invisibility cloaks," Opt. Express, Vol. 20, No. 1, 63-74, 2012.
    doi:10.1364/OE.20.000063

    10. Halimeh, J. C. and M. Wegener, "Photorealistic rendering of unidirectional free-space invisibility cloaks," Opt. Express, Vol. 21, 9457-9472, 2013.
    doi:10.1364/OE.21.009457

    11. Arthurs, A. M., Complementary Varational Principles, Oxford University Press, Oxford, 1980.

    12. Tonti, E., "On the mathematical structure of a large class of physical theories," Accademia Nazionale dei Lincei, Estratto dai Rendiconti della Classe di Scienze Fisiche, Matematiche e Naturali, Serie VIII, Vol. LII, fasc 1, 1972.

    13. Tonti, E., "A mathematical model for physical theories," Accademia Nazionale dei Lincei, Estratto dai Rendiconti della Classe di Scienze Fisiche, Matematiche e Naturali, Serie VIII, Vol. LII, fasc 2-3, 1972.

    14. Landau, L. D., E. M. Lifshitz, and L. P. Pitaevskii, Electrodynamics of Continuous Media, 2nd Ed., Vol. 8, Butterworth-Heinemann, Oxford, 1984.

    15. Duan, X., Y. Ma, and R. Zhang, "Shape-topology optimization of stokes flow via variational level set method," Journal of Computational and Applied Mechanics, Vol. 222, 487-499, 2008.
    doi:10.1016/j.cam.2007.11.016

    16. Duan, X., Y. Ma, and R. Zhang, "Shape-topology optimization for Navier-Stokes problem using variational level set method," Journal of Computational and Applied Mechanics, Vol. 202, 200-209, 2008.

    17. Osher, S. and R. Fedkiw, Level Set Methods and Dynamic Implicit Surfaces, Springer, 2003.
    doi:10.1007/b98879

    18. Tsai, R. and S. Osher, "Set methods and their applications in image science," Comm. Math. Sci., Vol. 1, No. 4, 623-656, 2003.

    19. Fung, Y. C., Foundations of Solid Mechanics, Prentice Hall, Englewood Cli®s, New Jersey, 1965.

    20. Chandrasekharaiah, D. L. and L. Debnath, Continuum Mechanics, 80, Academic Press, San Diego, 1994.

    21. Bellver-Cebreros, C. and M. Rodriguez-Danta, "On Inhomogeneous metamaterials media: A new alternative method for analysis of electromagnetic fields propagation," Progress In Electromagnetics Research, Vol. 149, 101-108, 2014.
    doi:10.2528/PIER14070306