Vol. 57

Latest Volume
All Volumes
All Issues
2015-10-22

Numerical Dispersion Analysis for the 3-D High-Order WLP-FDTD Method

By Wei-Jun Chen, Jun Quan, and Shi-Yu Long
Progress In Electromagnetics Research Letters, Vol. 57, 73-77, 2015
doi:10.2528/PIERL15092003

Abstract

In this paper, a theoretical analysis of numerical dispersion of the three-dimensional (3-D) high-order finite-difference time-domain (FDTD) method with weighted Laguerre polynomials (WLPs) is presented. The phase velocity of numerical wave modes is relevant to the direction of wave propagation, grid discretization and time-scale factor. The formula to determine a suitable time-scale factor is derived. By a theoretical evaluation, the dispersion errors for the 3-D high-order WLP-FDTD scheme with different time-scale factors are obtained. Finally, one numerical example is included to validate the effectiveness of the theoretical solution of the time-scale factor.

Citation


Wei-Jun Chen, Jun Quan, and Shi-Yu Long, "Numerical Dispersion Analysis for the 3-D High-Order WLP-FDTD Method," Progress In Electromagnetics Research Letters, Vol. 57, 73-77, 2015.
doi:10.2528/PIERL15092003
http://test.jpier.org/PIERL/pier.php?paper=15092003

References


    1. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, Artech House, Boston, MA, 2005.

    2. Chung, Y. S., T. K. Sarkar, B. H. Jung, and M. Salazar-Palma, "An unconditionally stable scheme for the finite-difference time-domain method," IEEE Trans. on Microwave Theory and Technique, Vol. 51, No. 3, 697-704, 2003.
    doi:10.1109/TMTT.2003.808732

    3. Duan, Y.-T., B. Chen, and Y. Yi, "Efficient Implementation for the unconditionally stable 2-D WLP-FDTD method," IEEE Microwave and Wireless Component Letters, Vol. 19, No. 11, 677-679, 2009.
    doi:10.1109/LMWC.2009.2031995

    4. Duan, Y. T., B. Chen, D.-G. Fang, and B.-H. Zhou, "Efficient implementation for 3-D Laguerre-based finite-difference time-domain method," IEEE Trans. Microw. Theory Tech., Vol. 59, No. 1, 56-64, Jan. 2011.
    doi:10.1109/TMTT.2010.2091206

    5. He, G.-Q., W. Shao, X.-H. Wang, and B.-Z. Wang, "An efficient domain decomposition Laguerre-FDTD method for two-dimensional scattering problems," IEEE Trans. Antennas Propag., Vol. 61, No. 5, 2639-2645, May 2013.
    doi:10.1109/TAP.2013.2242836

    6. Alighanbari, A. and C. D. Sarris, "An unconditionally stable Laguerre-based S-MRTD time-domain scheme," IEEE Antennas Wireless Propag. Lett., Vol. 5, 69-72, 2006.
    doi:10.1109/LAWP.2006.870364

    7. Profy, F. and Z. Chen, "Efficient mixed-order FDTD using the Laguerre polynomials on non-uniform meshes," IEEE/MTT-S International Microwave Symposium, 1967-1970, Jun. 2007.

    8. Duan, Y.-T., B. Chen, D.-G. Fang, B.-H. Zhou, and , "Efficient implementation for 3-D Laguerre-based finite-difference time-domain method," IEEE Trans. Antennas Propag., Vol. 59, No. 1, 56-64, Jan. 2011.

    9. Chen, W.-J., W. Shao, J.-L. Li, and B.-Z. Wang, "Numerical dispersion analysis and key parameter selection in Laguerre-FDTD method," IEEE Microw. Wireless Compon. Lett., Vol. 23, No. 12, 629-631, Dec. 2013.
    doi:10.1109/LMWC.2013.2283866

    10. Chen, Z., Y. T. Duan, Y. R. Zhang, and Y. Yi, "A new efficient algorithm for the unconditionally stable 2-D WLP-FDTD method," IEEE Trans. Antennas Propag., Vol. 61, No. 7, 3712-3720, Jul. 2013.
    doi:10.1109/TAP.2013.2255093

    11. Gustafsson, B., High Order Difference Methods for Time Dependent PDE, Springer, Berlin, Heidelberg, 2008.

    12. Chen, W.-J., J. Quan, and S.-Y. Long, "Analysis of numerical dispersion in the high-order 2-D WLP-FDTD method," Progress In Electromagnetics Research Letters, Vol. 55, 7-13, 2015.
    doi:10.2528/PIERL15051204

    13. Kantartzis, N. V. and T. D. Tsiboukis, Higher Order FDTD Schemes for Waveguide and Antenna Structures, Morgan and Claypool, San Rafael, CA, 2006.