In this paper, a high-gain amplifier module has been presented for millimeter wave applications. In order to suppress oscillation of the high-gain amplification block, a rectangular waveguide (WG) is fully integrated into the metal case, on which a cascaded two-stage amplifier is mounted. Due to the integrated WG, additional WG-to-microstrip line (MSL) transitions are required. Therefore, a low-loss and wide-band WG-to-MSL transition is designed and fabricated on a 5 mil thick RT5880 substrate. Two sets of WG-to-MSL transitions in back-to-back structure are assembled in the metal case for the high-gain amplifier module and are characterized. The measured transition loss and operational returnloss (S11) bandwidth less than -10 dB are less than -0.44 dB/a transition and 15.9 GHz from 34.1 to 50 GHz, respectively. The fabricated high-gain amplifier module shows a high gain over 39.7 dB from 38 to 41 GHz. At 38.7 GHz, its maximum gain of 44.25 dB is achieved.
2. Tessmann, A., A. Leuther, M. Kuri, H. Massler, M. Riessle, H. Essen, H. Stanko, R. Sommer, M. Zink, R. Stibal, W. Reinert, and M. Schlechtweg, "220 GHz low-noise amplifier modules for radiometric imaging applications," The 1st European Microwave Integrated Circuits Conference, 137-140, 2006.
doi:10.1109/EMICC.2006.282770
3. Kim, J.-G., D.-W. Kang, B.-W. Min, and G. M. Rebeiz, "A single-chip 36-38 GHz 4-element transmit/receive phased-array with 5-bit amplitude and phase control," IEEE MTT-S International Microwave Symposium, 561-564, 2009.
4. Yaakob, S., N. M. Samsuri, R. Mohamad, N. E. Farid, I. M. Azmi, S. M. M. Hassan, N. Khushairi, S. A. E. A. Rahim, A. I. A. Rahim, A. Rasmi, A. K. Zamzuri, S. M. Idrus, and S. Fan, "Live HD video transmission using 40 GHz radio over fibre downlink system," IEEE 3rd International Conference on Photonics (ICP), 246-249, 2012.
5. Rangan, S., T. S. Rappaport, and E. Erkip, "Millimeter wave cellular wireless networks: Potentials and challenges," Proceedings of the IEEE, Vol. 102, 366-385, 2014.
doi:10.1109/JPROC.2014.2299397
6. Tessmann, A., M. Riessle, S. Kudszus, and H. Massler, "A flip-chip packaged coplanar 94 GHz amplifier module with efficient suppression of parasitic substrate effects," IEEE Microwave and Wireless Components Letters, Vol. 14, 145-147, 2004.
doi:10.1109/LMWC.2004.827115
7. Dhar, J., R. K. Arora, A. Dasgupta, and S. S. Rana, "Enclosure effect on microwave power amplifier," Progress In Electromagnetics Research C, Vol. 19, 163-177, 2011.
doi:10.2528/PIERC10112604
8. Krems, T., A. Tessmann, W. H. Haydl, C. Schmelz, and P. Heide, "Avoiding cross talk and feedback effects in packaging coplanar millimeter-wave circuits," IEEE MTT-S International Microwave Symposium, Vol. 2, 1091-1094, 1998.
9. Beilenhoff, K. and W. Heinrich, "Excitation of the parasitic parallel-plate line mode at coplanar discontinuities," IEEE MTT-S International Microwave Symposium, Vol. 3, 1789-1792, 1997.
10. Yook, J.-G., L. P. B. Katehi, R. N. Simons, and K. A. Shalkhauser, "Experimental and theoretical study of parasitic leakage/resonance in a K/Ka-band MMIC package," IEEE Transactions on Microwave Theory and Techniques, Vol. 44, 2,403-2,410, 1996.
doi:10.1109/22.554569
11. Lee, Y. C., W.-I. Chang, and C. S. Park, "Monolithic LTCC SiP transmitter for 60 GHz wireless communication terminals," IEEE MTT-S International Microwave Symposium, 1015-1018, 2005.
12. Radisic, V., X. Mei, S. Sarkozy, W. Yoshida, P.-H. Liu, J. Uyeda, R. Lai, and W. R. Deal, "A 50 mW 220 GHz power amplifier module," IEEE MTT-S International Microwave Symposium, 45-48, 2010.
13. Tessmann, A., A. Leuther, V. Hurm, H. Massler, M. Zink, M. Kuri, M. Riessle, R. Losch, M. Schlechtweg, and O. Ambacher, "A 300 GHz mHEMT amplifier module," IEEE International Conference on Indium Phosphide & Related Materials, 196-199, 2009.
doi:10.1109/ICIPRM.2009.5012477
14. Samoska, L., S. Church, K. Cleary, A. Fung, T. C. Gaier, P. Kangaslahti, and P. Voll, "Cryogenic MMIC low noise amplifiers for W-band and beyond," International Symposium on Space Terahertz Technology, Tucson, AZ, 2011.
15. Avago Technologies, "AMMP-6441 36-40 GHz, 0.4W power amplifier in SMT package,", [Online]. Available: http://www.datasheetlib.com/datasheet/168419/ammp-6441-tr2g avago-technologies.html.
16. Rogers Corporation [Online], , Available: http://www.rogerscorp.com.
17. Leong, Y.-C. and S. Weinreb, "Full band waveguide-to-microstrip probe transitions," IEEE MTT-S International Microwave Symposium, 1435-1438, 1999.
18. Shireen, R., S. Shi, and D. W. Prather, "W-band microstrip-to-waveguide transition using via fences," Progress In Electromagnetics Research Letters, Vol. 16, 151-160, 2010.
doi:10.2528/PIERL10061407
19. CST Microwave Studio [Online], , Available: https://www.cst.com.
20. Avago Technologies, Application note 5520-AMxP-XXXX Production Assembly process (Land Pattern A), [Online]. Available: http://www.avagotech.com/docs/AV02-2954EN.