A beam-scanning partially reflective surface (PRS) antenna is presented in this paper. By employing a reconfigurable feed network to a two-element phased array source, the PRS antenna can realize beam steering between -10° and 10° with respect to the broadside direction across an overlapped frequency range from 5.35 GHz to 5.76 GHz. Good agreement between the simulated and measured results is achieved, which validates its capability to be a good candidate for the modern communication systems.
2. Feresidis, A. P. and J. C. Vardaxoglou, "High gain planar antenna using optimised partially reflective surfaces," IEE Proc. - Microw. Antenns Propag., Vol. 148, No. 6, 345-350, Dec. 2001.
doi:10.1049/ip-map:20010828
3. Guerin, N., S. Enoch, G. Tayeb, P. Sabouroux, P. Vincent, and H. Legay, "A metallic Fabry-Perot directive antenna," IEEE Trans. Antennas Propag., Vol. 53, No. 1, 209-215, Jan. 2006.
4. Wang, S., A. P. Feresidis, and J. C. Vardaxoglou, "High-gain subwavelength resonant cavity antenna based on metamaterial ground plane," Inst. Elect. Eng. Proc. Microw. Antenna Propag., Vol. 153, No. 1, 1-6, Feb. 2006.
doi:10.1049/ip-map:20050090
5. Weily, A. R., T. S. Bird, and Y. J. Guo, "A reconfigurable high-gain partially reflecting surface antenna," IEEE Trans. Antennas Propag., Vol. 56, No. 11, 3382-3390, Nov. 2008.
doi:10.1109/TAP.2008.2005538
6. Guzman-Quiros, R., J. L. Gomez-Tornero, A. R. Weily, and Y. J. Guo, "Electronically steerable 1-D Fabry-Perot leaky-wave antenna employing a tuneable high impedance surface," IEEE Trans. Antennas Propag., Vol. 60, No. 11, 5046-5055, Nov. 2012.
doi:10.1109/TAP.2012.2208089
7. Guzman-Quiros, R., J. L. Gomez-Tornero, A. R. Weily, and Y. J. Guo, "Electronic full-space scanning with 1-D Fabry-Perot LWA using electromagnetic band gap," IEEE Antennas Wireless Propag. Lett.,, Vol. 11, 1426-1429, 2012.
doi:10.1109/LAWP.2012.2228624
8. Guzman-Quirós, R., J. L. Gómez-Tornero, A. R. Weily, and Y. J. Guo, "Electronically steerable 1-D Fabry-Perot leaky-wave antenna employing a tunable high impedance surface," IEEE Trans. Antennas Propag., Vol. 60, No. 11, 5046-5055, Nov. 2011.
doi:10.1109/TAP.2012.2208089
9. Ourir, A., S. N. Burokur, and A. de Lustrac, "Electronic beam steering of an active metamaterial-based directive subwavelength cavity," 2nd European Conference on Antennas and Propagation, Edinburgh, Nov. 2007.
10. Moghadas, H., M. Daneshmand, and P. Mousavi, "Single-layer partially reflective surface for an orthogonally-polarised dual-band high-gain resonant cavity antenna," IET Microwaves, Antennas & Propagation, Vol. 7, No. 8, 656-662, Jun. 2013.
doi:10.1049/iet-map.2012.0298
11. Debogovic, T. and J. Perruisseau-Carrier, "Array-fed partially reflective surface antenna with independent scanning and beamwidth dynamic control," IEEE Trans. Antennas Propag., Vol. 62, No. 1, 446-449, Jan. 2014.
doi:10.1109/TAP.2013.2287018
12. Ding, C., Y. J. Guo, P.-Y. Qin, T. S. Bird, and Y. Yang, "A defected microstrip structure (DMS)-based phase shifter and its application to beamforming antennas," IEEE Trans. Antennas Propag., Vol. 62, No. 2, 641-651, Feb. 2014.
doi:10.1109/TAP.2013.2290802