Vol. 58

Latest Volume
All Volumes
All Issues

GPS Patch Antenna Loaded with Fractal EBG Structure Using Organic Magnetic Substrate

By Encheng Wang and Qiuping Liu
Progress In Electromagnetics Research Letters, Vol. 58, 23-28, 2016


In this paper, a novel circularly-polarized (CP) patch antenna using organic magnetic substrate is proposed. This patch antenna works at 1.575 GHz frequency band which is for the global positioning system (GPS) application. The organic magnetic material is used to realize the miniaturization of antenna. To improve gain and axial ratio bandwidth of the antenna, fractal Hi-impedance surface electro-magnetic band gap (EBG) structures was used. The proposed antenna has been fabricated and measured. The simulation results for operating frequency band are shown to have good agreement with measurements.


Encheng Wang and Qiuping Liu, "GPS Patch Antenna Loaded with Fractal EBG Structure Using Organic Magnetic Substrate," Progress In Electromagnetics Research Letters, Vol. 58, 23-28, 2016.


    1. Herscovici, N., Z. Sipus, and D. Bonefaci, "Circularly polarized single-fed wideband microstrip patch antenna," IEEE Trans. Antennas Propag., Vol. 51, No. 6, 1277-1280, 2003.

    2. Chen, M. and C.-C. Chen, "A compact dual-band GPS antenna design," IEEE Antennas Wireless Propag. Lett., Vol. 12, 245-248, 2013.

    3. Yasin, T. and R. Baktur, "Circularly polarized meshed patch antenna for small satellite application," IEEE Antennas Wireless Propag. Lett., Vol. 12, 1057-1060, 2013.

    4. Pozar, D. M., "Rigorous closed-form expressions for the surface wave loss of printed antennas," Electron. Lett., Vol. 26, 954-956, 1990.

    5. Bao, X. L., G. Ruvio, M. J. Ammann, and M. John, "A novel GPS patch antenna on a fractal hi-impedance surface substrate," IEEE Antennas Wireless Propag. Lett., Vol. 5, No. 6, 323-326, 2006.

    6. Llombart, N., A. Neto, G. Gerini, and P. de Maagt, "Planar circularly symmetric EBG structures for reducing surface waves in printed antennas," IEEE Trans. Antennas Propag., Vol. 53, No. 10, 3210-3218, Oct. 2005.

    7. Zaman, M. I., F. T. Hamedani, and H. Amjadi, "A new EBG structure and its application on microstrip patch antenna," 2012 15th International Symposium on Antenna Technology and Applied Electromagnetics (ANTEM), 1-3, 2012.

    8. Wang, E., J. Zheng, and Y. Liu, "A novel dual-band patch antenna for WLAN communication," Progress In Electromagnetics Research C, Vol. 6, 93-102, 2009.

    9. Rao, P. N. and N. V. S. N. Sarma, "Fractal boundary circularly polarised feed microstrip antenna," Electron. Lett., Vol. 44, No. 12, 713-714, 2008.

    10. Sievenpiper, D., L. Zhang, R. F. J. Broas, N. G. Alexopolus, and E. Yablonovitch, "High-impedance electromagnetic surfaces with a forbidden frequency band," IEEE Trans. Microwave Theory Tech., Vol. 47, 2059-2074, 1999.

    11. Yang, F. and Y. Rahmat-Samii, Electromagnetic Band Gap Structures in Antenna Engineering, Cambridge University Press, 2009.

    12. Xu, H. L., Y. G. Lv, X. G. Luo, and C. L. Du, "Method for identifying the surface wave frequency band-gap of EBG structures," Microw. Opt. Tech. Lett., Vol. 49, No. II, 2668-2672, 2007.

    13. Falade, O. P., M. U. Rehman, Y. (Frank) Gao, X. Chen, and C. G. Parini, "Single feed stacked patch circular polarized antenna for triple band GPS receivers," IEEE Trans. Antennas Propag., Vol. 60, No. 10, 4479-4484, 2012.

    14. So, K. K., H. Wong, K. M. Luk, and C. H. Chan, "Miniaturized circularly polarized patch antenna with low back radiation for GPS satellite communications," IEEE Trans. Antennas Propag., Vol. 63, No. 12, 5934-5938, 2015.

    15. Oh, K., B. Kim, and J. Choi, "Novel integrated GPS/RKES/PCS antenna for vehicular application," IEEE Microwave and Wireless Components Letters, Vol. 15, No. 4, 244-246, 2015.