Vol. 59

Latest Volume
All Volumes
All Issues
2016-04-27

Transformation-Based Flexible Thermal Hose with Homogeneous Conductors in Bilayer Configurations

By Tiancheng Han and Yuhang Gao
Progress In Electromagnetics Research Letters, Vol. 59, 137-143, 2016
doi:10.2528/PIERL16010504

Abstract

Thermal hose is capable of transferring the thermal energy of a finite source to arbitrary long distance. This is achieved by using stretching transformation and can be ideally constructed by using a material with a highly anisotropic thermal conductivity. For practical realization, such a thermal hose can be made of homogeneous conductors in bilayer configurations, employing only copper and expanded polystyrene. It is shown that the thermal energy can be well confined and almost perfectly transferred in an arbitrarily bending hose, demonstrating excellent flexibility. More interestingly is that, when a point heat source is placed at the opening of a split-ring-shaped hose, the temperature of the inner region becomes uniform and reaches nearly as high as the heat source. These novel properties of the proposed flexible thermal hose have been numerically validated in time-dependent case, showing excellent transfer and configuration of thermal energy.

Citation


Tiancheng Han and Yuhang Gao, "Transformation-Based Flexible Thermal Hose with Homogeneous Conductors in Bilayer Configurations," Progress In Electromagnetics Research Letters, Vol. 59, 137-143, 2016.
doi:10.2528/PIERL16010504
http://test.jpier.org/PIERL/pier.php?paper=16010504

References


    1. Onnes, H. K., "On the sudden change in the rate at the resistance of mercury disappears," Phys. Lab. Univ. Leiden, 120b-122b, 1911.

    2. Hassenzahl, W. V., D.W. Hazelton, B. K. Johnson, P. Komarek, M. Noe, and C. T. Reis, "Electric power applications of superconductivity," Proceedings of the IEEE, Vol. 92, 1655-1674, 2004.
    doi:10.1109/JPROC.2004.833674

    3. Stewart, G. R., "Superconductivity in iron compounds," Rev. Mod. Phys., Vol. 83, 1589-1652, 2011.
    doi:10.1103/RevModPhys.83.1589

    4. Pendry, J. B., D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science, Vol. 312, 1780-1782, 2006.
    doi:10.1126/science.1125907

    5. Schurig, D., J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science, Vol. 314, 977-980, 2006.
    doi:10.1126/science.1133628

    6. Ma, H. and T. J. Cui, "Three-dimensional broadband ground-plane cloak made of metamaterials," Nat. Commun., Vol. 1, 21, 2010.

    7. Ergin, T., N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, "Three-dimensional invisibility cloak at optical wavelengths," Science, Vol. 328, 337-339, 2010.
    doi:10.1126/science.1186351

    8. Landy, N. and D. R. Smith, "A full-parameter unidirectional metamaterial cloak for microwaves," Nat. Mater., Vol. 12, 25-28, 2013.
    doi:10.1038/nmat3476

    9. Liu, Z., H. Lee, Y. Xiong, C. Sun, and X. Zhang, "Far-field optical hyperlens magnifying sub-diffraction-limited objects," Science, Vol. 315, 1686, 2007.
    doi:10.1126/science.1137368

    10. Chen, H., B. Hou, S. Chen, X. Ao, W. Wen, and C. T. Chan, "Design and experimental realization of a broadband transformation media field rotator at microwave frequencies," Phys. Rev. Lett., Vol. 102, 183903, 2009.
    doi:10.1103/PhysRevLett.102.183903

    11. Chen, H. and C. T. Chan, "Acoustic cloaking in three dimensions using acoustic metamaterials," Appl. Phys. Lett., Vol. 91, 183518, 2007.
    doi:10.1063/1.2803315

    12. Zhang, S., C. Xia, and N. Fang, "Broadband acoustic cloak for ultrasound waves," Phys. Rev. Lett., Vol. 106, 024301, 2011.
    doi:10.1103/PhysRevLett.106.024301

    13. Greenleaf, A., Y. Kurylev, M. Lassas, and G. Uhlmann, "Isotropic transformation optics: approximate acoustic and quantum cloaking," New J. Phys., Vol. 10, 115024, 2008.
    doi:10.1088/1367-2630/10/11/115024

    14. Zhang, S., D. A. Genov, C. Sun, and X. Zhang, "Cloaking of matter waves," Phys. Rev. Lett., Vol. 100, 123002, 2008.
    doi:10.1103/PhysRevLett.100.123002

    15. Brun, M., S. Guenneau, and A. B. Movchan, "Achieving control of in-plane elastic waves," Appl. Phys. Lett., Vol. 94, 061903, 2009.
    doi:10.1063/1.3068491

    16. Gomory, F., M. Solovyov, J. Souc, C. Navau, J. Prat-Camps, and A. Sanchez, "Experimental realization of a magnetic cloak," Science, Vol. 335, 1466-1468, 2012.
    doi:10.1126/science.1218316

    17. Narayana, S. and Y. Sato, "DC magnetic cloak," Adv. Mater., Vol. 24, 71-74, 2012.
    doi:10.1002/adma.201104012

    18. Yang, F., Z. Mei, T. Jin, and T. J. Cui, "dc electric invisibility cloak," Phys. Rev. Lett., Vol. 109, 053902, 2012.
    doi:10.1103/PhysRevLett.109.053902

    19. Milton, G. W., M. Briane, and J. R. Willis, "On cloaking for elasticity and physical equations with a transformation invariant form," New J. Phys., Vol. 8, 248, 2006.
    doi:10.1088/1367-2630/8/10/248

    20. Fan, C., Y. Gao, and J. Huang, "Shaped graded materials with an apparent negative thermal conductivity," Appl. Phys. Lett., Vol. 92, 251907, 2008.
    doi:10.1063/1.2951600

    21. Chen, T., C. N. Weng, and J. S. Chen, "Cloak for curvilinearly anisotropic media in conduction," Appl. Phys. Lett., Vol. 93, 114103, 2008.
    doi:10.1063/1.2988181

    22. Li, J., Y. Gao, and J. Huang, "A bifunctional cloak using transformation media," J. Appl. Phys., Vol. 108, 074504, 2010.
    doi:10.1063/1.3490226

    23. Guenneau, S., C. Amra, and D. Veynante, "Transformation thermodynamics: Cloaking and concentrating heat flux," Opt. Express, Vol. 20, 8207-8218, 2012.
    doi:10.1364/OE.20.008207

    24. Schittny, R., M. Kadic, S. Guenneau, and M. Wegener, "Experiments on transformation thermodynamics: Molding the flow of heat," Phys. Rev. Lett., Vol. 110, 195901, 2013.
    doi:10.1103/PhysRevLett.110.195901

    25. Ma, Y., L. Lan, W. Jiang, F. Sun, and S. He, "A transient thermal cloak experimentally realized through a rescaled diffusion equation with anisotropic thermal diffusivity," NPG Asia Materials, Vol. 5, e73, 2013.
    doi:10.1038/am.2013.60

    26. Han, T., T. Yuan, B. Li, and C.-W. Qiu, "Homogeneous thermal cloak with constant conductivity and tunable heat localization," Sci. Rep., Vol. 3, 1593, 2013.

    27. Narayana, S. and Y. Sato, "Heat flux manipulation with engineered thermal materials," Phys. Rev. Lett., Vol. 108, 214303, 2012.
    doi:10.1103/PhysRevLett.108.214303

    28. Dede, E. M., T. Nomura, P. Schmalenberg, and J. S. Lee, "Heat flux cloaking, focusing, and reversal in ultra-thin composites considering conduction-convection effects," Appl. Phys. Lett., Vol. 103, 063501, 2013.
    doi:10.1063/1.4816775

    29. Han, T., X. Bai, D. Gao, J. T. Thong, B. Li, and C. W. Qiu, "Experimental demonstration of a bilayer thermal cloak," Phys. Rev. Lett., Vol. 112, 054302, 2014.
    doi:10.1103/PhysRevLett.112.054302

    30. Xu, H., X. Shi, F. Gao, H. Sun, and B. Zhang, "Ultrathin three-dimensional thermal cloak," Phys. Rev. Lett., Vol. 112, 054301, 2014.
    doi:10.1103/PhysRevLett.112.054301

    31. Nguyen, D. M., H. Xu, Y. Zhang, and B. Zhang, "Active thermal cloak," Appl. Phys. Lett., Vol. 107, 121901, 2015.
    doi:10.1063/1.4930989

    32. Han, T., X. Bai, D. Liu, D. Gao, B. Li, J. T. Thong, and C. W. Qiu, "Manipulating steady heat conduction by sensu-shaped thermal metamaterials," Sci. Rep., Vol. 5, 10242, 2015.
    doi:10.1038/srep10242

    33. Navau, C., J. Prat-Camps, O. Romero-Isart, J. I. Cirac, and A. Sanchez, "Long-distance transfer and routing of static magnetic fields," Phys. Rev. Lett., Vol. 112, 253901, 2014.
    doi:10.1103/PhysRevLett.112.253901

    34. Prat-Camps, J., C. Navau, and A. Sanchez, "A magnetic wormhole," Sci. Rep., Vol. 5, 12488, 2015.
    doi:10.1038/srep12488

    35. Qiu, C.-W., L. Hu, X. Xu, and Y. Feng, "Spherical cloaking with homogeneous isotropic multilayered structures," Phys. Rev. E, Vol. 79, 047602, 2009.
    doi:10.1103/PhysRevE.79.047602