Vol. 59

Latest Volume
All Volumes
All Issues
2016-04-03

Mutual Coupling Reduction Between Printed Dual-Frequency Antenna Arrays

By Lin Li, Yantao Yu, and Lijun Yi
Progress In Electromagnetics Research Letters, Vol. 59, 63-69, 2016
doi:10.2528/PIERL16020601

Abstract

A new defected ground structure (DGS) is designed to reduce the mutual coupling of a dual-frequency printed monopole array. The designed dual-frequency DGS consists of two concentric split ring slots. Each split ring slot produces band rejection characteristics at one resonant frequency of the antennas. An effective equivalent circuit model of the DGS section is proposed with the circuit parameters successfully extracted. Good agreement exists among the circuit simulation, EM simulation and experimental results. With the inclusion of the DGS, the measured mutual coupling of the dual-band array has been effectively reduced by 10 dB and 20 dB at two resonant frequencies, respectively.

Citation


Lin Li, Yantao Yu, and Lijun Yi, "Mutual Coupling Reduction Between Printed Dual-Frequency Antenna Arrays," Progress In Electromagnetics Research Letters, Vol. 59, 63-69, 2016.
doi:10.2528/PIERL16020601
http://test.jpier.org/PIERL/pier.php?paper=16020601

References


    1. Dossche, S., S. Blanch, and J. Romeu, "Optimum antenna matching to minimize signals correlation on a two-port antenna diversity system," Electronics Lett., Vol. 40, No. 19, 1164-1165, 2004.
    doi:10.1049/el:20045737

    2. Hong, T. and Y. Yu, "A compact monopole array with increased port isolation," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 8/9, 1213-1220, 2011.
    doi:10.1163/156939311795762123

    3. Lee, T.-I. and Y. Wang, "Mode-based information channels in closely coupled dipole pairs," IEEE Trans. Antennas Propag., Vol. 56, No. 12, 3804-3804, 2008.
    doi:10.1109/TAP.2008.2007379

    4. Coetzee, J. C. and Y. Yu, "Port decoupling for small arrays by means of an eigenmode feed network," IEEE Trans. Antennas Propag., Vol. 56, No. 6, 1587-1593, 2008.
    doi:10.1109/TAP.2008.923301

    5. Lui, H.-S. and H. T. Hui, "Effective mutual coupling compensation for direction-of-arrival estimations using a new, accurate determination method for the receiving mutual impedance," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 2/3, 271-281, 2010.
    doi:10.1163/156939310790735598

    6. Lui, H. S. and H. T. Hui, "Mutual coupling compensation for direction-of-arrival estimations using the receiving-mutual-impedance method," International Journal of Antennas and Propagation, March 2010.

    7. Lui, H.-S., H. T. Hui, and M. S. Leong, "A note on the mutual coupling problems in transmitting and receiving antenna array," IEEE Antennas and Propagations Magazine, Vol. 51, No. 5, 171-176, 2009.
    doi:10.1109/MAP.2009.5432083

    8. Yang, F. and Y. Rahmat-Samii, "Microstrip antennas integrated with electromagnetic band-gap (EBG) structures: a low mutual coupling design for array applications," IEEE Trans. Antennas Propag., Vol. 51, No. 10, 2936-2946, 2003.
    doi:10.1109/TAP.2003.817983

    9. Kim, C.-S., J.-S. Lim, S. Nam, K.-Y. Kang, and D. Ahn, "Equivalent circuit modeling of spiral defected ground structure for microstrip line," Electron. Lett., Vol. 38, 1109-1111, 2002.
    doi:10.1049/el:20020742

    10. Jiang, Y., Y. Yu, M. Yuan, and L. Wu, "A compact printed monopole array with defected ground structure to reduce the mutual coupling," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 14/15, 1963-1974, 2011.
    doi:10.1163/156939311798072036

    11. Bait-Suwailam, M. M., O. F. Siddiqui, and O. M. Ramahi, "Mutual coupling reduction between microstrip patch antennas using slotted-complementary split-ring resonators," IEEE Antennas Wireless Propag. Lett., Vol. 9, 876-878, 2010.
    doi:10.1109/LAWP.2010.2074175

    12. Lin, K.-C., C.-H. Wu, C.-H. Lai, and T.-G. Ma, "Novel dual-band decoupling network for two-element closely spaced array using synthesized microstrip lines," IEEE Trans. Antennas Propag., Vol. 60, No. 11, 5118-5128, 2012.
    doi:10.1109/TAP.2012.2207687

    13. Sharawi, M. S., A. B. Numan, M. U. Khan, and D. N. Aloi, "A dual-element dual-band MIMO antenna system with enhanced isolation for mobile terminals," IEEE Antennas Wireless Propag. Lett., Vol. 11, 1006-1009, 2012.
    doi:10.1109/LAWP.2012.2214433

    14. Caloz, C., H. Okabe, T. Iwai, and T. Itoh, "A simple and accurate model for microstrip structures with slotted ground plane," IEEE Microwave and Wireless Components Letters, Vol. 14, No. 3, 127-129, 2004.
    doi:10.1109/LMWC.2003.822564

    15. Gupta, K. C., R. Garg, I. Bahl, and P. Bhartia, Microstrip lines and Slotlines, 2nd Ed., Artech House, Norwood, NJ, 1996.

    16. Ahn, D., J.-S. Park, C.-S. Kim, J. Kim, Y. Qian, and T. Itoh, "A design of the low-pass filter using the novel microstrip defected ground structure," IEEE Trans. Microwave Theory Techniques, Vol. 49, No. 1, 86-93, 2001.
    doi:10.1109/22.899965

    17. Pozar, D. M., Microwave Engineering, 3rd Ed., Wiley, Hoboken, NJ, 2005.

    18. Axelrod, A., M. Kisliuk, and J. Maoz, "Broadband microstip-fed slot radiator," Microwave Journal, Vol. 32, 81-94, 1989.

    19. Wu, H.-W., M.-H. Weng, Y.-K. Su, R.-Y. Yang, and C.-S. Ye, "An effective equivalent circuit model of slotted ground structures under planar microstrip," Microwave and Optical Technology Letters, Vol. 50, No. 10, 2651-2653, 2008.
    doi:10.1002/mop.23779