A metamaterial-based broadband antenna loaded with artificial impedance surface (AIS) is presented in this letter. Two metallic vias connect a Y-shaped patch to the ground plane. The patch, two metallic vias, and the AIS compose an epsilon negative (ENG) transmission line (TL). The asymmetry Y shaped patch and the AIS bring about the first-order resonance (FOR) and second-order resonance (SOR) modes, which can be merged into one passband to yield a wideband property. The proposed ENG-TL resonant antenna has the advantages of compact size, wide bandwidth, and high gain, which can be applied to portable and handheld communication system.
2. Jang, T., J. Choi, and S. Lim, "Compact coplanar waveguide (CPW)-fed zeroth-order resonant antennas with extended bandwidth and high efficiency on vialess single layer," IEEE Trans. on Antennas Propagat., Vol. 59, No. 2, 363-372, 2011.
doi:10.1109/TAP.2010.2096191
3. Herraiz-Martinez, F. J., V. Gonzalez-Posadas, L. E. Garcia-Munoz, and D. Segovia-Vargas, "Multifrequency and dual-mode patch antennas partially filled with left-handed structures," IEEE Trans.on Antennas Propagat., Vol. 56, No. 8, 2527-2539, 2008.
doi:10.1109/TAP.2008.927518
4. Nordin, M. A. W., M. T. Islam, and N. Misran, "Design of a compact ultrawideband metamaterial antenna based on the modied split-ring resonator and capacitively loaded strips unit cell," Progress In Electromagnetics Research, Vol. 136, No. 1, 157-173, 2013.
doi:10.2528/PIER12100708
5. Liu, W., Z. N. Chen, and X. M. Qing, "Metamaterial-based low-profile broadband mushroom antenna," IEEE Trans. on Antennas Propagat., Vol. 62, No. 3, 1165-1172, 2014.
doi:10.1109/TAP.2013.2293788
6. Huang, H., Y. Liu, S. S Zhang, and S. X. Gong, "Multiband metamaterial-loaded monopole antenna for WLAN/WiMAX applications," IEEE Antennas Wireless Propag Lett., Vol. 14, No. 2, 662-665, 2015.
doi:10.1109/LAWP.2014.2376969
7. Bala, B. D., M. K. A. Rahim, and N. A. Murad, "A dual mode metamaterial antenna is proposed for wideband applications," Microwave Optical Technol Lett., Vol. 56, No. 8, 1846-1850, 2014.
doi:10.1002/mop.28471
8. Bala, B. D., M. K. A. Rahim, and N. A. Murad, "Bandwidth enhancement metamaterial antenna based on transmission line approach," Microwave Optical Technol Lett., Vol. 57, No. 1, 252-256, 2015.
doi:10.1002/mop.28821
9. Niu, B. J. and Q. Y. Feng, "Epsilon negative zeroth- and first-order resonant antennas with extended bandwidth and high efficiency," IEEE Trans. on Antennas Propagat., Vol. 61, No. 12, 5878-5884, 2013.
doi:10.1109/TAP.2013.2281357
10. Mosallaei, H. and K. Sarabandi, "Antenna miniaturization and bandwidth enhancement using a reactive impedance substrate," IEEE Trans. on Antennas Propagat., Vol. 52, No. 9, 24032414, 2004.
doi:10.1109/TAP.2004.834135
11. Dong, Y. D., H. Toyao, and T. Itoh, "Compact circularly-polarized patch antenna loaded with metamaterials," IEEE Trans. on Antennas Propagat., Vol. 59, No. 11, 4329-4333, 2011.
doi:10.1109/TAP.2011.2164223
12. Dong, Y. D., H. Toyao, and T. Itoh, "Design and characterization of miniaturized patch antennas loaded with complementary split-ring resonators," IEEE Trans. on Antennas Propagat., Vol. 60, No. 2, 772-785, 2012.
doi:10.1109/TAP.2011.2173120
13. Xu, H. X., G. M.Wang, J. G. Liang, M. Q. Qi, and X. Gao, "Compact circularly polarized antennas combining meta-surfaces and strong space-filling meta-resonators," IEEE Trans. on Antennas Propagat., Vol. 61, No. 7, 3442-3450, 2013.
doi:10.1109/TAP.2013.2255855
14. Itoh, A., T. Lai, and C. Caloz, "Composite right/left-handed transmission line metamaterials," IEEE Microwave Magazine, Vol. 5, No. 3, 34-50, 2004.
doi:10.1109/MMW.2004.1337766
15. Park, J. H., Y. H. Ryu, J. G. Lee, and J. H. Lee, "Epsilon negative zeroth-order resonator antenna," IEEE Trans. on Antennas Propagat., Vol. 55, No. 12, 3710-3712, 2007.
doi:10.1109/TAP.2007.910505