Vol. 61

Latest Volume
All Volumes
All Issues
2016-07-14

Dual Broadband Metamaterial Polarization Converter in Microwave Regime

By Dong Yang, Hai Lin, and Xiaojun Huang
Progress In Electromagnetics Research Letters, Vol. 61, 71-76, 2016
doi:10.2528/PIERL16033004

Abstract

Polarization converters based on metamaterial have broad application in imaging, sensing and communication from microwave to optical frequency. However, its performance is limited by single function and narrowband. In this paper, a new type of polarization converter based on square loop shaped metamaterial has been presented. It works in the reflection mode to achieve broadband polarization conversion for both circular and x/y linear polarization waves. The incident linearly polarized wave will be converted to its cross-polarized state with a polarization conversion ratio (PCR) lager than 0.9 in two distinct broad frequency ranges; on the other hand, circularly polarized wave will be reflected to its co-polarized state efficiently in the same spectrum regimes. Good agreements have been observed for both simulation and measurement results. This work offers a further step in developing high performance multi-function microwave or optical devices.

Citation


Dong Yang, Hai Lin, and Xiaojun Huang, "Dual Broadband Metamaterial Polarization Converter in Microwave Regime," Progress In Electromagnetics Research Letters, Vol. 61, 71-76, 2016.
doi:10.2528/PIERL16033004
http://test.jpier.org/PIERL/pier.php?paper=16033004

References


    1. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of ε and μ," Sov. Phys. Usp., Vol. 10, No. 4, 509-514, 1968.
    doi:10.1070/PU1968v010n04ABEH003699

    2. Smith, D. R., J. B. Pendry, and M. C. K. Wiltshire, "Metamaterials and negative refractive index," Science, Vol. 305, No. 5685, 788-792, 2004.
    doi:10.1126/science.1096796

    3. Hoffman, A. J., L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, "Negative refraction in semiconductor metamaterials," Nat. Mater., Vol. 6, No. 12, 946-950, 2007.
    doi:10.1038/nmat2033

    4. Zhang, B., "Electrodynamics of transformation-based invisibility cloaking," Light: Sci. Appl., Vol. 1, No. 10, e32, 2012.
    doi:10.1038/lsa.2012.32

    5. Schurig, D., J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, Science, Vol. 314, No. 5801, 977-980, 2006.
    doi:10.1126/science.1133628

    6. He, X. J., L. Wang, J. M. Wang, X. H. Tian, J. X. Jiang, and Z. X. Geng, "Electromagnetically induced transparency inplanar complementary metamaterial for refractive index sensing applications," J. Phys. D: Appl. Phys., Vol. 46, No. 36, 510-516, 2013.
    doi:10.1088/0022-3727/46/36/365302

    7. Wu, C., A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, "Fano-resonant asymmetric metamaterials for ultra sensitive spectroscopy and identification of molecular monolayers," Nat. Mater., Vol. 11, No. 1, 69-75, 2012.
    doi:10.1038/nmat3161

    8. Cheng, Y., C. Wu, Z. Z. Cheng, and R. Z. Gong, "Ultra-compact multi-band chiral metamaterial circular polarizer based on triple twisted split-ring resonator," Progress In Electromagnetics Research, Vol. 155, 105-113, 2016.
    doi:10.2528/PIER16012501

    9. Cheng, Y. Z., W. Withayachumnankul, A. Upadhyay, D. Headland, Y. Nie, R. Z. Gong, M. Bhaskaran, S. Sriram, and D. Abbott, "Ultra broadband reflective polarization convertor for terahertz waves," Appl. Phys. Lett., Vol. 105, No. 18, 181111–4, 2014.
    doi:10.1063/1.4901272

    10. Dincer, A. F., M. Karaaslan, E. Unal, O. Akgol, and C. Sabah, "Chiral metamaterial structures with strong optical activity and their applications," Optical Engineering, Vol. 53, No. 10, 107101-107108, 2014.
    doi:10.1117/1.OE.53.10.107101

    11. Zhang, L., P. Zhou, H. Chen, H. Lu, J. Xie, and L. Deng, "Adjustable wideband reflective converter based on cut-wire metasurface," J. Opt., Vol. 17, No. 10, 105105, 2015.
    doi:10.1088/2040-8978/17/10/105105

    12. Xie, L., H.-L. Yang, X. Huang, and Z. Li, "Multi-band circular polarization using archimedean spiral structure chiral metamaterial with zero and negative refractive index," Progress In Electromagnetics Research, Vol. 141, 645-657, 2013.
    doi:10.2528/PIER13063003

    13. Yang, Y., W. Wang, P. Moitra, I. Kravchenko, D. P. Briggs, and J. Valentine, "Dielectric metareflect array for broadband linear polarization conversion and optical vortex generation," Nano. Lett., Vol. 14, No. 3, 1394-1399, 2014.
    doi:10.1021/nl4044482

    14. Chen, H. T., W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, "A metamaterial solid-state terahertz phase modulator," Nat. Photon., Vol. 3, No. 3, 148-151, 2009.
    doi:10.1038/nphoton.2009.3

    15. Hsieh, C. F., R. P. Pan, T. T. Tang, H. L. Chen, and C. L. Pan, "Voltage-controlled liquid-crystal terahertz phase shifter and quarter-wave plate," Opt. Lett., Vol. 31, No. 8, 1112-1114, 2006.
    doi:10.1364/OL.31.001112

    16. Rogacheva, A. V., V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, "Giant gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure," Phys. Rev. Lett., Vol. 97, No. 17, 177401, 2006.
    doi:10.1103/PhysRevLett.97.177401

    17. Ye, Y., X. Li, F. Zhuang, and S. W. Chang, "Homogeneous circular polarizers using a bilayered chiral metamaterial," Appl. Phys. Lett., Vol. 99, No. 3, 031111-3, 2011.
    doi:10.1063/1.3615054

    18. Cao, Y., Y. Xie, Z. Geng, J. Liu, Q. Kan, and H. Chen, "Polarization-sensitive coupling and transmission dip shift in asymmetric metamaterials," J. Phys. Chem. C, Vol. 119, No. 11, 6204-6210, 2015.
    doi:10.1021/jp512296t

    19. Jiang, S. C., X. Xiong, Y. S. Hu, Y. H. Hu, G. B. Ma, R. W. Peng, C. Sun, and M. Wang, "Controlling the polarization state of light with a dispersion-free metastructure," Phys. Rev. X, Vol. 4, No. 2, 021026, 2014.

    20. Li, Z., S. Chen, C. Tang, W. Liu, H. Cheng, Z. Liu, J. Li, P. Yu, B. Xie, Z. Liu, J. Li, and J. Tian, "Broadband diodelike asymmetric transmission of linearly polarized light in ultrathin hybrid metamaterial," Appl. Phys. Lett., Vol. 105, No. 20, 201103-5, 2014.

    21. Song, K., Y. Liu, C. Luo, and X. Zhao, "High-efficiency broadband and multiband cross-polarization conversion using chiral metamaterial," J. Phys. D: Appl. Phys., Vol. 47, No. 50, 505104, 2014.
    doi:10.1088/0022-3727/47/50/505104

    22. Tamayama, Y., K. Yasui, T. Nakanishi, and M. Kitano, "A linear-to-circular polarization converter with half transmission and half reflection using a single-layered metamaterial," Appl. Phys. Lett., Vol. 105, No. 2, 021110-4, 2014.
    doi:10.1063/1.4890623

    23. Wu, J., B. Ng, H. Liang, M. Breese, M. Hong, S. A. Maier, H. O. Moser, and O. Hess, "Chiral metafoils for terahertz broadband high-contrast flexible circular polarizers," Phys. Rev. Appl., Vol. 2, No. 1, 014005, 2014.
    doi:10.1103/PhysRevApplied.2.014005

    24. Liu, D. Y., M. H. Li, X. M. Zhai, L. F. Yao, and J. F. Dong, "Enhanced asymmetric transmission due to Fabry-Perot-Like cavity," Opt. Express, Vol. 22, No. 10, 11707-11712, 2014.
    doi:10.1364/OE.22.011707

    25. Mutlu, M. and E. Ozbay, "A transparent 90 polarization rotator by combining chirality and electromagnetic wave tunneling," Appl. Phys. Lett., Vol. 100, No. 5, 051909-4, 2012.
    doi:10.1063/1.3682591

    26. Tremain, B., H. J. Rance, A. P. Hibbins, and J. R. Sambles, "Polarization conversion from a thin cavity array in the microwave regime," Sci. Rep., Vol. 5, No. 9366, 2015.

    27. Huang, S., J. Li, A. Zhang, J. Wang, and Z. Xu, "Broadband cross polarization converter using plasmon hybridizations in a ring/disk cavity," Opt. Express, Vol. 22, No. 17, 20973-20981, 2014.
    doi:10.1364/OE.22.020973

    28. Ma, H. F., G. Z. Wang, G. S. Kong, and T. J. Cui, "Broadband circular and linear polarization conversions realized by thin birefringent reflective metasurfaces," Opt. Mater. Express, Vol. 4, No. 8, 1717-1724, 2014.
    doi:10.1364/OME.4.001717

    29. Ding, F., Z. Wang, S. He, M. S. Vladimir, and V. K. Alexander, "Broadband high-efficiency half-wave plate a supercell-based plasmonic metasurface approach," ACS Nano., Vol. 9, No. 4, 4111-4119, 2015.
    doi:10.1021/acsnano.5b00218

    30. Nanfang, Y., P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, "Light propagation with phase discontinuities: Generalized laws of reflection and refraction," Science, Vol. 334, No. 6054, 333-347, 2011.
    doi:10.1126/science.1210713