Vol. 61

Latest Volume
All Volumes
All Issues

Dual Broadband Metamaterial Polarization Converter in Microwave Regime

By Dong Yang, Hai Lin, and Xiaojun Huang
Progress In Electromagnetics Research Letters, Vol. 61, 71-76, 2016


Polarization converters based on metamaterial have broad application in imaging, sensing and communication from microwave to optical frequency. However, its performance is limited by single function and narrowband. In this paper, a new type of polarization converter based on square loop shaped metamaterial has been presented. It works in the reflection mode to achieve broadband polarization conversion for both circular and x/y linear polarization waves. The incident linearly polarized wave will be converted to its cross-polarized state with a polarization conversion ratio (PCR) lager than 0.9 in two distinct broad frequency ranges; on the other hand, circularly polarized wave will be reflected to its co-polarized state efficiently in the same spectrum regimes. Good agreements have been observed for both simulation and measurement results. This work offers a further step in developing high performance multi-function microwave or optical devices.


Dong Yang, Hai Lin, and Xiaojun Huang, "Dual Broadband Metamaterial Polarization Converter in Microwave Regime," Progress In Electromagnetics Research Letters, Vol. 61, 71-76, 2016.


    1. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of ε and μ," Sov. Phys. Usp., Vol. 10, No. 4, 509-514, 1968.

    2. Smith, D. R., J. B. Pendry, and M. C. K. Wiltshire, "Metamaterials and negative refractive index," Science, Vol. 305, No. 5685, 788-792, 2004.

    3. Hoffman, A. J., L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, "Negative refraction in semiconductor metamaterials," Nat. Mater., Vol. 6, No. 12, 946-950, 2007.

    4. Zhang, B., "Electrodynamics of transformation-based invisibility cloaking," Light: Sci. Appl., Vol. 1, No. 10, e32, 2012.

    5. Schurig, D., J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, Science, Vol. 314, No. 5801, 977-980, 2006.

    6. He, X. J., L. Wang, J. M. Wang, X. H. Tian, J. X. Jiang, and Z. X. Geng, "Electromagnetically induced transparency inplanar complementary metamaterial for refractive index sensing applications," J. Phys. D: Appl. Phys., Vol. 46, No. 36, 510-516, 2013.

    7. Wu, C., A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, "Fano-resonant asymmetric metamaterials for ultra sensitive spectroscopy and identification of molecular monolayers," Nat. Mater., Vol. 11, No. 1, 69-75, 2012.

    8. Cheng, Y., C. Wu, Z. Z. Cheng, and R. Z. Gong, "Ultra-compact multi-band chiral metamaterial circular polarizer based on triple twisted split-ring resonator," Progress In Electromagnetics Research, Vol. 155, 105-113, 2016.

    9. Cheng, Y. Z., W. Withayachumnankul, A. Upadhyay, D. Headland, Y. Nie, R. Z. Gong, M. Bhaskaran, S. Sriram, and D. Abbott, "Ultra broadband reflective polarization convertor for terahertz waves," Appl. Phys. Lett., Vol. 105, No. 18, 181111–4, 2014.

    10. Dincer, A. F., M. Karaaslan, E. Unal, O. Akgol, and C. Sabah, "Chiral metamaterial structures with strong optical activity and their applications," Optical Engineering, Vol. 53, No. 10, 107101-107108, 2014.

    11. Zhang, L., P. Zhou, H. Chen, H. Lu, J. Xie, and L. Deng, "Adjustable wideband reflective converter based on cut-wire metasurface," J. Opt., Vol. 17, No. 10, 105105, 2015.

    12. Xie, L., H.-L. Yang, X. Huang, and Z. Li, "Multi-band circular polarization using archimedean spiral structure chiral metamaterial with zero and negative refractive index," Progress In Electromagnetics Research, Vol. 141, 645-657, 2013.

    13. Yang, Y., W. Wang, P. Moitra, I. Kravchenko, D. P. Briggs, and J. Valentine, "Dielectric metareflect array for broadband linear polarization conversion and optical vortex generation," Nano. Lett., Vol. 14, No. 3, 1394-1399, 2014.

    14. Chen, H. T., W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, "A metamaterial solid-state terahertz phase modulator," Nat. Photon., Vol. 3, No. 3, 148-151, 2009.

    15. Hsieh, C. F., R. P. Pan, T. T. Tang, H. L. Chen, and C. L. Pan, "Voltage-controlled liquid-crystal terahertz phase shifter and quarter-wave plate," Opt. Lett., Vol. 31, No. 8, 1112-1114, 2006.

    16. Rogacheva, A. V., V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, "Giant gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure," Phys. Rev. Lett., Vol. 97, No. 17, 177401, 2006.

    17. Ye, Y., X. Li, F. Zhuang, and S. W. Chang, "Homogeneous circular polarizers using a bilayered chiral metamaterial," Appl. Phys. Lett., Vol. 99, No. 3, 031111-3, 2011.

    18. Cao, Y., Y. Xie, Z. Geng, J. Liu, Q. Kan, and H. Chen, "Polarization-sensitive coupling and transmission dip shift in asymmetric metamaterials," J. Phys. Chem. C, Vol. 119, No. 11, 6204-6210, 2015.

    19. Jiang, S. C., X. Xiong, Y. S. Hu, Y. H. Hu, G. B. Ma, R. W. Peng, C. Sun, and M. Wang, "Controlling the polarization state of light with a dispersion-free metastructure," Phys. Rev. X, Vol. 4, No. 2, 021026, 2014.

    20. Li, Z., S. Chen, C. Tang, W. Liu, H. Cheng, Z. Liu, J. Li, P. Yu, B. Xie, Z. Liu, J. Li, and J. Tian, "Broadband diodelike asymmetric transmission of linearly polarized light in ultrathin hybrid metamaterial," Appl. Phys. Lett., Vol. 105, No. 20, 201103-5, 2014.

    21. Song, K., Y. Liu, C. Luo, and X. Zhao, "High-efficiency broadband and multiband cross-polarization conversion using chiral metamaterial," J. Phys. D: Appl. Phys., Vol. 47, No. 50, 505104, 2014.

    22. Tamayama, Y., K. Yasui, T. Nakanishi, and M. Kitano, "A linear-to-circular polarization converter with half transmission and half reflection using a single-layered metamaterial," Appl. Phys. Lett., Vol. 105, No. 2, 021110-4, 2014.

    23. Wu, J., B. Ng, H. Liang, M. Breese, M. Hong, S. A. Maier, H. O. Moser, and O. Hess, "Chiral metafoils for terahertz broadband high-contrast flexible circular polarizers," Phys. Rev. Appl., Vol. 2, No. 1, 014005, 2014.

    24. Liu, D. Y., M. H. Li, X. M. Zhai, L. F. Yao, and J. F. Dong, "Enhanced asymmetric transmission due to Fabry-Perot-Like cavity," Opt. Express, Vol. 22, No. 10, 11707-11712, 2014.

    25. Mutlu, M. and E. Ozbay, "A transparent 90 polarization rotator by combining chirality and electromagnetic wave tunneling," Appl. Phys. Lett., Vol. 100, No. 5, 051909-4, 2012.

    26. Tremain, B., H. J. Rance, A. P. Hibbins, and J. R. Sambles, "Polarization conversion from a thin cavity array in the microwave regime," Sci. Rep., Vol. 5, No. 9366, 2015.

    27. Huang, S., J. Li, A. Zhang, J. Wang, and Z. Xu, "Broadband cross polarization converter using plasmon hybridizations in a ring/disk cavity," Opt. Express, Vol. 22, No. 17, 20973-20981, 2014.

    28. Ma, H. F., G. Z. Wang, G. S. Kong, and T. J. Cui, "Broadband circular and linear polarization conversions realized by thin birefringent reflective metasurfaces," Opt. Mater. Express, Vol. 4, No. 8, 1717-1724, 2014.

    29. Ding, F., Z. Wang, S. He, M. S. Vladimir, and V. K. Alexander, "Broadband high-efficiency half-wave plate a supercell-based plasmonic metasurface approach," ACS Nano., Vol. 9, No. 4, 4111-4119, 2015.

    30. Nanfang, Y., P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, "Light propagation with phase discontinuities: Generalized laws of reflection and refraction," Science, Vol. 334, No. 6054, 333-347, 2011.