Vol. 61

Latest Volume
All Volumes
All Issues
2016-06-13

A Dual Band Fractal Slot Antenna Loaded with Jerusalem Crosses for Wireless and WiMAX Communications

By Mohammad Sadegh Sedghi, Mohammad Naser-Moghadasi, and Ferdows B. Zarrabi
Progress In Electromagnetics Research Letters, Vol. 61, 19-24, 2016
doi:10.2528/PIERL16042702

Abstract

In this paper, a combination of the Jerusalem cross (JC) as a fractal load and fractal Minkowski slot antenna for dual-band application is investigated. The prototype slot antenna has a Minkowski fractal formation with four Jerusalem cross (JC) loads to achieve dual-band application with compact size to improve the bandwidth. A T-shaped feed line is implemented in the final modeled antenna. The fabricated antenna has a bi-directional pattern with sufficient bandwidth at 2.4-3.1 GHz and 5.1-5.9 GHz with VSWR<2 for Wi-Fi, WiMAX, Bluetooth application as well as an IEEE WLAN protocol with a gain of 5-6 dBi, respectively. The size of the prototype patch antenna is 40×40 mm2, and the antenna is designed and fabricated on an FR-4 low cost substrate with εr=4.4 and thickness of 1.6 mm. It is simulated by HFSS full wave software. In addition, the VSWR, pattern and axial ratio of experimental results are presented and compared with simulation models. As a result, improvements of the Jerusalem cross compared with conventional cross have been achieved with some parameter tuning to improve the band width.

Citation


Mohammad Sadegh Sedghi, Mohammad Naser-Moghadasi, and Ferdows B. Zarrabi, "A Dual Band Fractal Slot Antenna Loaded with Jerusalem Crosses for Wireless and WiMAX Communications," Progress In Electromagnetics Research Letters, Vol. 61, 19-24, 2016.
doi:10.2528/PIERL16042702
http://test.jpier.org/PIERL/pier.php?paper=16042702

References


    1. Lee, C.-T. and K.-L. Wong, "Uniplanar printed coupled-fed PIFA with a band-notching slit for WLAN/WiMAX operation in the laptop computer," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 4, 1252-1258, 2009.
    doi:10.1109/TAP.2009.2015843

    2. Mobashsher, A. and A. Abbosh, "Utilizing symmetry of planar ultra-wideband antennas for size reduction and enhanced performance," IEEE Antennas and Propagation Magazine, Vol. 57, No. 2, 153-166, 2015.
    doi:10.1109/MAP.2015.2414488

    3. Krishna, D. D., M. Gopikrishna, C. K. Anandan, P. Mohanan, and K. Vasudevan, "CPW-fed Koch fractal slot antenna for WLAN/WiMAX applications," IEEE Antennas and Wireless Propagation Letters, Vol. 7, 389-392, 2008.
    doi:10.1109/LAWP.2008.2000814

    4. Lin, D.-B., I. Tang, and Y.-J. Wei, "Compact dual-band-notched CPW-fed wide-slot antenna for WLAN and WiMAX applications," Microwave and Optical Technology Letters, Vol. 53, No. 7, 1496-1501, 2011.
    doi:10.1002/mop.26042

    5. Lee, B. and F. J. Harackiewicz, "Miniature microstrip antenna with a partially filled high-permittivity substrate," IEEE Transactions on Antennas and Propagation, Vol. 50, No. 8, 1160-1162, 2002.
    doi:10.1109/TAP.2002.801360

    6. Wang, X.-Y. and G.-M. Yang, "Dual frequency and dual circular polarization slot antenna for BeiDou navigation satellite system applications," Microwave and Optical Technology Letters, Vol. 56, No. 10, 2222-2225, 2014.
    doi:10.1002/mop.28560

    7. Xiao, S., B.-Z. Wang, W. Shao, and Y. Zhang, "Bandwidth-enhancing ultralow-profile compact patch antenna," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 11, 3443-3447, 2005.
    doi:10.1109/TAP.2005.858838

    8. Gianvittorio, J. P. and Y. Rahmat-Samii, "Fractal antennas: A novel antenna miniaturization technique, and applications," IEEE Antennas and Propagation magazine, Vol. 44, No. 1, 20-36, 2002.
    doi:10.1109/74.997888

    9. Best, S. R., "A discussion on the significance of geometry in determining the resonant behavior of fractal and other non-Euclidean wire antennas," IEEE Antennas and Propagation Magazine, Vol. 45, No. 3, 9-28, 2003.
    doi:10.1109/MAP.2003.1232160

    10. Chandel, R., A. K. Gautam, and B. K. Kanaujia, "Microstrip-line FED beak-shaped monopole-like slot UWB antenna with enhanced band width," Microwave and Optical Technology Letters, Vol. 56, No. 11, 2624-2628, 2014.
    doi:10.1002/mop.28660

    11. Hanapi, K. M., S. K. A. Rahim, B. M. Saad, A. Rani, M. Subri, and M. Z. A. Aziz, "An elliptically planar UWB monopole antenna with step slots defective ground structure," Microwave and Optical Technology Letters, Vol. 56, No. 9, 2084-2088, 2014.
    doi:10.1002/mop.28530

    12. Zarrabi, F. B., Z. Mansouri, R. Ahmadian, M. Rahimi, and H. Kuhestani, "Microstrip slot antenna applications with SRR for WiMAX/WLAN with linear and circular polarization," Microwave and Optical Technology Letters, Vol. 57, No. 6, 1332-1338, 2015.
    doi:10.1002/mop.29080

    13. Krishna, R. V. S. R. and R. Kumar, "Design of ultra wideband trapezoidal shape slot antenna with circular polarization," AEU-International Journal of Electronics and Communications, Vol. 67, No. 12, 1038-1047, 2013.
    doi:10.1016/j.aeue.2013.06.005

    14. Chen, R. H. and Y.-C. Lin, "Miniaturized design of microstrip-fed slot antennas loaded with C-shaped rings," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 203-206, 2011.
    doi:10.1109/LAWP.2011.2123075

    15. Pan, S.-P., J.-Y. Sze, and P.-J. Tu, "Circularly polarized square slot antenna with a largely enhanced axial-ratio bandwidth," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 969-972, 2012.

    16. Werner, D. H. and S. Ganguly, "An overview of fractal antenna engineering research," IEEE Antennas and Propagation Magazine, Vol. 45, No. 1, 38-57, 2003.
    doi:10.1109/MAP.2003.1189650

    17. Kumar, R. and P. B. Nikam, "A modified ground apollonian ultra wideband fractal antenna and its backscattering," AEU-International Journal of Electronics and Communications, Vol. 66, No. 8, 647-654, 2012.
    doi:10.1016/j.aeue.2011.12.002

    18. An, J., G.-M. Wang, W.-D. Zeng, and L.-X. Ma, "UWB filter using defected ground structure of von koch fractal shape slot," Progress In Electromagnetics Research Letters, Vol. 6, 61-66, 2009.
    doi:10.2528/PIERL08121309

    19. Li, D. and J.-F. Mao, "A Koch-like sided fractal bow-tie dipole antenna," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 5, 2242-2251, 2012.
    doi:10.1109/TAP.2012.2189719

    20. Baliarda, C. P., J. Romeu, and A. Cardama, "The Koch monopole: A small fractal antenna," IEEE Transactions on Antennas and Propagation, Vol. 48, No. 11, 1773-1781, 2000.
    doi:10.1109/8.900236

    21. Comisso, M., "On the use of dimension and lacunarity for comparing the resonant behavior of convoluted wire antennas," Progress In Electromagnetics Research, Vol. 96, 361-376, 2009.
    doi:10.2528/PIER09082505

    22. Mahatthanajatuphat, C., P. Akkaraekthalin, S. Saleekaw, and M. Krairiksh, "A bidirectional multiband antenna with modified fractal slot fed by CPW," Progress In Electromagnetics Research, Vol. 95, 59-72, 2009.
    doi:10.2528/PIER09061603

    23. ang, G.-D., M.-H. Liu, X.-W. Hu, L.-H. Kong, L.-L. Cheng, and Z.-Q. Chen, "Multi-band microwave metamaterial absorber based on coplanar Jerusalem crosses," Chinese Phys. B, Vol. 23, 017802, 2014.

    24. Huang, H.-C., K.-H. Lin, H.-L. Su, C.-Y. Wu, and H.-H. Lin, "Design of dual-polarized high-gain antenna radome by using Jerusalem cross metamaterial structure," 2009 IEEE Antennas and Propagation Society International Symposium, 2009.