Vol. 65

Latest Volume
All Volumes
All Issues
2017-01-04

Wideband Fabry-Perot Resonator Antenna with Single-Layer Partially Reflective Surface

By Yuan Xu, Ruina Lian, Zedong Wang, and Ying-Zeng Yin
Progress In Electromagnetics Research Letters, Vol. 65, 37-41, 2017
doi:10.2528/PIERL16072806

Abstract

A single-layer partially reflective surface (PRS) structure is presented to design single-feed Fabry-Perot resonator antennas (FPRA) with a large gain bandwidth and compact size. The design of the PRS structure applied in this antenna is based on the theory of tightly coupled antenna arrays. Owing to strong mutual coupling between the overlapped patches, the proposed antenna obtains a wider bandwidth and more compact size. Experimental results show that the antenna obtains a 32% 3-dB gain bandwidth from 8.8 GHz to 12.2 GHz, with a peak gain of 13.5 dBi. Moreover, the relative impendence bandwidth is 40.9% for the voltage standing wave ratio (VSWR) less than 2 from 8.45 GHz to 12.8 GHz.

Citation


Yuan Xu, Ruina Lian, Zedong Wang, and Ying-Zeng Yin, "Wideband Fabry-Perot Resonator Antenna with Single-Layer Partially Reflective Surface," Progress In Electromagnetics Research Letters, Vol. 65, 37-41, 2017.
doi:10.2528/PIERL16072806
http://test.jpier.org/PIERL/pier.php?paper=16072806

References


    1. Weily, A. R., K. P. Esselle, T. S. Bird, and B. C. Sanders, "Dual resonator 1-D EBG antenna with slot array feed for improved radiation bandwidth," IET Microw. Antennas Propag., Vol. 1, No. 1, 198-203, February 2007.
    doi:10.1049/iet-map:20050314

    2. Gou, Y., S. Yang, J. Li, and Z. Nie, "A compact dual-polarized printed dipole antenna with high isolation for wideband base station applications," IEEE Trans. Antennas Propag., Vol. 62, No. 8, 4392-4395, August 2014.
    doi:10.1109/TAP.2014.2327653

    3. Wang, N., L. Talbi, Q. Zeng, and J. Xu, "Wideband high gain 1-D EBG resonator antenna," IEEE Conference Publication, 1-4, 2013.

    4. Hashmi, R. M., B. Zeb, and K. P. Esselle, "Wideband high-gain EBG resonator antennas with small footprints and all-dielectric superstructures," IEEE Trans. Antennas Propag., Vol. 62, No. 6, 2970-2977, June 2014.
    doi:10.1109/TAP.2014.2314534

    5. Konstantinidis, K., A. Feresidis, and P. Hall, "Dual subwave length Fabry Perot cavities for broadband highly directive antennas," IEEE Antennas Wireless Propag. Lett., Vol. 13, 1184-1186, June 2014.
    doi:10.1109/LAWP.2014.2331801

    6. Tzanidis, I., K. Sertel, and J. L. Volakis, "Characteristic excitation taper for ultra-wideband tightly coupled antenna arrays," IEEE Trans. Antennas Propag., Vol. 60, No. 4, 1777-1784, April 2012.
    doi:10.1109/TAP.2012.2186269

    7. Doane, J. P., K. Sertel, and J. L. Volakis, "A wideband, wide scanning tightly coupled dipole array with integrated balun (TCDA-IB)," IEEE Trans. Antennas Propag., Vol. 61, No. 9, 4538-4548, September 2013.
    doi:10.1109/TAP.2013.2267199

    8. Tzanidis, I., K. Sertel, and J. L. Volakis, "UWB low-profile tightly coupled dipole array with integrated balun and edge terminations," IEEE Trans.Antennas Propag., Vol. 61, No. 6, 3017-3025, 2014.
    doi:10.1109/TAP.2013.2250232