This paper proposes a wideband dual-polarized magneto-electric dipole antenna composed of two pairs of vertical shorted patches and two pairs of horizontal double-layered planar dipoles. To achieve dual-polarization radiation, two orthogonal Γ-shaped stepped-impedance strip feed lines are designed to excite the antenna. The regions between the vertical shorted patches are loaded by dielectric materials to reduce the antenna profile. In addition, the antenna is backed with a rectangular cavity-shaped reflector to improve radiation pattern stability and diminish back radiation. Experimental results demonstrate that the proposed antenna has obtained a wide impedance bandwidth of 57.1% from 1.5 to 2.7 GHz and high port isolation of better than 30 dB within the bandwidth. The average antenna gain is about 9.7 dBi with a variation of below ±1.5 dB and the radiation patterns are unidirectional, symmetric with low back radiation, and low cross-polarization radiation across the entire operating band.
2. Lee, K. F., K. M. Luk, K. F. Tong, S. M. Shum, T. Huynh, and R. Q. Lee, "Experimental and simulation studies of the coaxially fed U-slot rectangular patch antenna," IEE Proc. Microw. Antennas Propag., Vol. 144, No. 5, 354-358, 1997.
doi:10.1049/ip-map:19971334
3. Guo, Y. X., K. M. Luk, K. F. Lee, and Y. L. Chow, "Double U-slot rectangular patch antenna," Electron. Lett., Vol. 34, No. 19, 1805-1806, 1998.
doi:10.1049/el:19981283
4. Chen, Z. N. and M. Y. W. Chia, "Broadband suspended plate antennas fed by double L-shaped strips," IEEE Trans. Antennas Propag., Vol. 52, No. 9, 2496-2500, 2004.
doi:10.1109/TAP.2004.834029
5. Luk, K. M. and H. Wong, "A new wideband unidirectional antenna element," Int. J. Microw. Opt. Technol., Vol. 1, No. 1, 35-44, 2006.
6. Ge, L. and K. M. Luk, "A low-profile magneto-electric dipole antenna," IEEE Trans. Antennas Propag., Vol. 60, No. 4, 1684-1689, 2012.
doi:10.1109/TAP.2012.2186260
7. An, W. X., H. Wong, K. L. Lau, S. F. Li, and Q. Xue, "Design of broadband dual-band dipole for base station antenna," IEEE Trans. Antennas Propag., Vol. 60, No. 3, 1592-1595, 2012.
doi:10.1109/TAP.2011.2180336
8. Li, J. X., A. X. Zhang, J. G. Liu, and Q. H. Liu, "Cavity-backed wideband magneto-electric antenna for through-the-wall imaging radar applications," Proc. 2016 IEEE Radar Conf., 62-64, 2016.
9. Wong, K. L., Compact and Broadband Microstrip Antennas, Wiley, New York, 2002.
doi:10.1002/0471221112
10. Alarjani, B. M. and J. S. Dahele, "Feed reactance of rectangular microstrip patch antenna with probe feed," Electron. Lett., Vol. 36, No. 5, 388-390, 2000.
doi:10.1049/el:20000363
11. Huang, J., "A parallel-series-fed microstrip array with high efficiency and low cross-polarization," Microw. Opt. Technol. Lett., Vol. 5, No. 5, 230-233, 1992.
doi:10.1002/mop.4650050509
12. Chiou, T. W. and K. L. Wong, "Broadband dual-polarized single microstrip patch antenna with high isolation and low cross polarization," IEEE Trans. Antennas Propag., Vol. 50, No. 3, 399-401, 2002.
doi:10.1109/8.999635
13. Siu, L., H. Wong, and K. M. Luk, "A dual-polarized magneto-electric dipole with dielectric loading," IEEE Trans. Antennas Propag., Vol. 57, No. 3, 616-623, 2009.
doi:10.1109/TAP.2009.2013430
14. Seo, H. J. and A. A. Kishk, "Wideband magnetic-electric antenna with linear single or dual polarization," Progress In Electromagnetics Research, Vol. 155, 53-61, 2016.
doi:10.2528/PIER15120607
15. Ansoft High Frequency Structural Simulator (HFSS), Framingham, , MA, USA, Ansoft Corp., 2006.