In this paper, a broadband power amplifier with high efficiency and output power based on GaN HEMT is presented. The design of broadband matching network and transistor package modeling is presented, and a simulation strategy is proposed to increase the simulation accuracy. According to measured results, the PA module shows a linear gain of 10~13 dB during 1.9-4 GHz. The efficiency can reach 74.5%, and the maximum output power reaches 33.2 Watt. For a 5-MHz WCDMA signal, the designed power amplifier achieves an average output power above 20 W when ACLR = -30 dBc over the entire working band.
2. Saphiro, E., J. Xu, A. Naga, F. Williams, U. Mishra, and R. York, "A high efficiency traveling-wave power amplifier topology using improved power-combining technique," IEEE Microw. Guided Wave Lett., Vol. 8, No. 3, 133-135, Mar. 1998.
doi:10.1109/75.661139
3. Gassmann, J., P. Watson, L. Kehias, and G. Henry, "Wideband, high-efficiency GaN power amplifiers utilizing a non-uniform distributed topology," IEEE MTT-S Int. Microw. Symp. Dig., 615-618, Jun. 2007.
4. Kim, B. and H. Q. Tserng, "0.5 W 2-21 GHz monolithic GaAs distributed amplifier," Electronics Letters, Vol. 20, 288-289, Mar. 1984.
doi:10.1049/el:19840197
5. Chen, K. and D. Peroulis, "Design of highly efficient broadband class-E power amplifier using synthesized low-pass matching networks," IEEE Trans. Microw. Theory Tech., Vol. 59, No. 12, 3162-3173, Dec. 2011.
doi:10.1109/TMTT.2011.2169080
6. Carrubba, V., J. Lees, J. Benedikt, P. J. Tasker, and S. C. Cripps, "A novel highly efficient broadband continuous class-F RFPA delivering 74% average efficiency for an octave bandwidth," IEEE MTT-S Int. Micro. Symp. Dig., 1-4, 2011.
7. Chen, K. and D. Peroulis, "Design of broadband high-efficiency power amplifier using in-band class-F^(-1)/F mode transferring technique," IEEE MTT-S Int. Microw. Symp. Digest, 17-22, Montreal, QC, Canada, Jun. 2012.
8. Wright, P., J. Lees, J. Benedikt, P. J. Tasker, and S. C. Cripps, "A methodology for realizing high efficiency class-J in a linear and broadband PA," IEEE Trans. Microw. Theory Tech., Vol. 57, No. 12, 3196-3204, 2009.
doi:10.1109/TMTT.2009.2033295
9. Igi, S., M. Kobiki, T. Sakayori, M. Ohashi, M. Wataze, T. Suzuki, and K. Kusunoki, "Internally matched (IM) plated source bridge (PSB) power GaAs FET achieving a high performance power amplifier in X-band," IEEE MTT-S Int. Micro. Symp. Dig., 153-155, 1982.
doi:10.1109/MWSYM.1982.1130644
10. Aaen, P. A., J. A. Pla, and C. A. Balanis, "Modeling techniques suitable for CAD-based design of internal matching networks of high-power RF/microwave transistors," IEEE Trans. Microw. Theory Techn., Vol. 54, No. 7, 3052-3059, Jul. 2006.
doi:10.1109/TMTT.2006.877033
11. Aaen, P. H., J. A. Pla, and C. A. Balanis, "On the development of CAD techniques suitable for the design of high-power RF transistors," IEEE Trans. Microw. Theory Tech., Vol. 53, No. 10, 3067-3074, Oct. 2005.
doi:10.1109/TMTT.2005.855129
12. Schnieder, F., O. Bengtsson, F.-J. Schmuckle, M. Rudolph, and W. Heinrich, "Simulation of RF power distribution in a packaged GaN power transistor using an electro-thermal large-signal description," IEEE Transactions on Microwave Theory and Techniques, Vol. 61, No. 7, 2603-2609, 2013.
doi:10.1109/TMTT.2013.2261089
13. Flucke, J., F.-J. Schmuckle, W. Heinrich, and M. Rudolph, "An accurate package model for 60 W GaN power transistors," Eur. Microw. Integr. Circuits Conf., 152-155, 2009.
14. Dawson, D., "Closed-form solutions for the design of optimum matching networks," IEEE Trans. Microw. Theory Tech., Vol. 57, No. 1, 121-129, Jan. 2009.
doi:10.1109/TMTT.2008.2009041
15. Rhea, R. W., HF Filter Design and Computer Simulation, Noble, New York, 1994.
16. Saad, P., et al., "Design of a highly efficient 2-4 GHz octave bandwidth GaN-HEMT power amplifier," IEEE Trans. Microw. Theory Tech., Vol. 58, No. 7, 1677-1685, 2010.
doi:10.1109/TMTT.2010.2049770
17. Canning, T., P. J. Tasker, and S. C. Cripps, "Continuous mode power amplifier design using harmonic clipping contours: Theory and practice," IEEE Trans. Microw. Theory Tech., Vol. 62, No. 1, 100-110, 2014.
doi:10.1109/TMTT.2013.2292675
18. Dai, Z., et al., "A new distributed parameter broadband matching method for power amplifier via real frequency technique," IEEE Trans. Microw. Theory Tech., Vol. 63, No. 2, 449-458, 2015.
doi:10.1109/TMTT.2014.2385087