Vol. 65

Latest Volume
All Volumes
All Issues
2016-12-18

Gain Enhancement of Slot Antenna Using Grooved Structure and FSS Layer

By Bilal El Jaafari and Jean-Marie Floc'h
Progress In Electromagnetics Research Letters, Vol. 65, 1-7, 2017
doi:10.2528/PIERL16102507

Abstract

This letter presents a high gain slot antenna for K-band non-contact measurement systems. The proposed antenna consists of a slot antenna on a grooved metal structure with a single frequency selective surface. In addition to a high-gain characteristic, a reduced size is strongly required for easy embedding. These features are the main objectives of this antenna design. To achieve these two objectives, an optimization procedure, based on a global algorithm, is used. Both simulation and optimization are carried out by means a full-wave electromagnetic simulation tool. Eventually, to validate the proposed design, a prototype of the antenna has been manufactured and tested. More than 15 dB of gain is measured over the operating frequency range, while optimal gain can reach 17 dB at frequency 25.5 GHz. These characteristics make this antenna very suitable for non-contact measurement i.e. radar systems.

Citation


Bilal El Jaafari and Jean-Marie Floc'h, "Gain Enhancement of Slot Antenna Using Grooved Structure and FSS Layer," Progress In Electromagnetics Research Letters, Vol. 65, 1-7, 2017.
doi:10.2528/PIERL16102507
http://test.jpier.org/PIERL/pier.php?paper=16102507

References


    1. Skolnik, M., "Role of radar in microwaves," IEEE Transactions on Microwave Theory and Techniques, Vol. 50, No. 3, 625-632, Mar. 2002.
    doi:10.1109/22.989947

    2. Nanzer, J., Microwave and Millimeter-wave Remote Sensing for Security Applications, House Remote Sensing Library, Artech House, 2012.

    3. El Jaafari, B. and J.-M. Floch, "Low-profile wideband monopole antenna for mobile and wireless monitoring applications," Microwave and Optical Technology Letters, Vol. 58, No. 8, 1813-1817, 2016.
    doi:10.1002/mop.29916

    4. Du Preez, J. and S. Sinha, Millimeter-Wave Antennas: Configurations and Applications, Springer, 2016.
    doi:10.1007/978-3-319-35068-4

    5. Alsath, M. G. N., L. Lawrance, and M. Kanagasabai, "Bandwidth-enhanced grid array antenna for UWB automotive radar sensors," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 11, 5215-5219, Nov. 2015.
    doi:10.1109/TAP.2015.2478143

    6. Wirth, W. D., "Radar techniques using array antennas," Electromagnetics and Radar Series, Institution of Engineering and Technology, 2013.

    7. Rabinovich, V. and N. Alexandrov, Antenna Arrays and Automotive Applications, SpringerLink, Bucher, New York, 2012.

    8. Foroozesh, A. and L. Shafai, "Investigation into the effects of the patch-type FSS superstrate on the high-gain cavity resonance antenna design," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 2, 258-270, Feb. 2010.
    doi:10.1109/TAP.2009.2037702

    9. Edalati, A. and T. A. Denidni, "High-gain reconfigurable sectoral antenna using an active cylindrical FSS structure," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 7, 2464-2472, Jul. 2011.
    doi:10.1109/TAP.2011.2152327

    10. Feresidis, P. and J. C. Vardaxoglou, "High gain planar antenna using optimised partially reflective surfaces," IEE Proceedings --- Microwaves, Antennas and Propagation, Vol. 148, No. 6, 345-350, Dec. 2001.
    doi:10.1049/ip-map:20010828

    11. Konstantinidis, K., A. P. Feresidis, and P. S. Hall, "Broadband sub-wavelength profile high-gain antennas based on multi-layer metasurfaces," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 1, 423-427, Jan. 2015.
    doi:10.1109/TAP.2014.2365825

    12. Sutinjo, A. and M. Okoniewski, "A simple leaky-wave analysis of 1-d grooved metal structure for enhanced microwave radiation," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 6, 2719-2726, Jun. 2012.
    doi:10.1109/TAP.2012.2194655

    13. Huang, C., Z. Zhao, Q. Feng, and X. Luo, "A high-gain antenna consisting of two slot elements with a space larger than a wavelength," IEEE Antennas and Wireless Propagation Letters, Vol. 9, 159-162, 2010.
    doi:10.1109/LAWP.2010.2044863

    14. Huang, C., Z. Zhao, Q. Feng, C. Wang, and X. Luo, "Grooves-assisted surface wave modulation in two-slot array for mutual coupling reduction and gain enhancement," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 912-915, 2009.
    doi:10.1109/LAWP.2009.2028587

    15. Diaz, M. B., et al., "Dual-band low-profile corrugated feeder antenna," IEEE Transactions on Antennas and Propagation, Vol. 54, No. 2, 340-350, Feb. 2006.
    doi:10.1109/TAP.2005.863380

    16. Bird, T. S., Fundamentals of Aperture Antennas and Arrays, John Wiley & Sons, Ltd., 2016.

    17. Alsath, M. G. N., L. Lawrance, and M. Kanagasabai, "Bandwidth-enhanced grid array antenna for UWB automotive radar sensors," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 11, 5215-5219, Nov. 2015.
    doi:10.1109/TAP.2015.2478143

    18. Yang, W., K. Ma, K. S. Yeo, and W. M. Lim, "A compact high-performance patch antenna array for 60-GHz applications," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 313-316, 2016.
    doi:10.1109/LAWP.2015.2443054