Vol. 66

Latest Volume
All Volumes
All Issues
2017-03-31

RCS Reduction Using a Miniaturized Uni-Planar Electromagnetic Band Gap Structure for Circularly Polarized Microstrip Antenna Array

By Lei Zhang and Tao Dong
Progress In Electromagnetics Research Letters, Vol. 66, 135-141, 2017
doi:10.2528/PIERL17011504

Abstract

In this paper, a new method for radar cross section (RCS) reduction of circularly polarized (CP) microstrip antenna array with small element spacing is proposed. By employing the element rotation technique and loading EBG structures, the in-band and out-of-band RCSs are reduced simultaneously despite the extreme small space between array elements. The simulated results show that the proposed antenna has an average RCS reduction over 10 dB in the X-band for x-polarized and y-polarized incident waves impinging from normal direction compared to the original CP microstrip antenna array, indicating a fractional bandwidth of 40%. The maximum RCS reduction is over 25 dB. Meanwhile, the radiation performance of the proposed antenna array is kept.

Citation


Lei Zhang and Tao Dong, "RCS Reduction Using a Miniaturized Uni-Planar Electromagnetic Band Gap Structure for Circularly Polarized Microstrip Antenna Array," Progress In Electromagnetics Research Letters, Vol. 66, 135-141, 2017.
doi:10.2528/PIERL17011504
http://test.jpier.org/PIERL/pier.php?paper=17011504

References


    1. Knott, E. F., J. F. Shaeffer, and M. T. Tuley, Radar Cross Section, SciTech Publishing, Raleigh, 2004.
    doi:10.1049/SBRA026E

    2. Gong, S. X. and Y. Liu, Prediction and Reduction of Antenna Radar Cross Section, Xidian University Press, 2010.

    3. Liu, Y., K. Li, Y. T. Jia, Y. W. Hao, S. X. Gong, and Y. J. Guo, "Wideband RCS reduction of a slot array antenna using polarization conversion metasurfaces," IEEE Trans. Antennas Propag., Vol. 64, No. 1, 326-331, 2016.
    doi:10.1109/TAP.2015.2497352

    4. Li, W. Q., X. Y. Cao, J. Gao, Q. Yang, and S. J. Li, "A novel low RCS microstrip antenna," 3th Asia-Pacific Conference on Antennas and Propagation, 495-498, Harbin, China, August 2014.

    5. Dikmen, C. M., S. Cimen, and G. Cakir, "Planar octagonal-shaped UWB antenna with reduced radar cross section," IEEE Trans. Antennas Propag., Vol. 62, No. 6, 2946-2953, 2014.
    doi:10.1109/TAP.2014.2313855

    6. Huang, C., W. B. Pan, X. L. Ma, and X. G. Luo, "Wideband radar cross section reduction of a stacked patch array antenna using metasurface," IEEE Antennas Wireless Propag. Lett., Vol. 14, 1369-1372, 2015.
    doi:10.1109/LAWP.2015.2407375

    7. Genovesi, S., F. Costa, and A. Monorchio, "Wideband radar cross section reduction of slots antennas arrays," IEEE Trans. Antennas Propag., Vol. 62, No. 1, 163-167, 2014.
    doi:10.1109/TAP.2013.2287888

    8. Nasimuddin, Z., N. Chen, and X. M. Qing, "Bandwidth enhancement of single-feed circularly polarized antenna using meta-surface," IEEE Antennas and Propagation Magazine, Vol. 58, No. 2, 36-49, 2016.
    doi:10.1109/MAP.2016.2520257

    9. Agarwal, K., Nasimuddin, and A. Alphones, "RIS-based compact circularly polarized microstrip," IEEE Trans. Antennas Propag., Vol. 61, No. 2, 549-554, 2013.
    doi:10.1109/TAP.2012.2225816

    10. Munk, B. A., Frequency Selective Surface, Theory and Design, Wiley, New York, NY, USA, 2000.
    doi:10.1002/0471723770

    11. Zheng, J. and S. J. Fang, "A new method for designing low RCS patch antenna using frequency selective surface," Progress In Electromagnetics Research Letters, Vol. 58, 125-131, 2016.
    doi:10.2528/PIERL15122702

    12. Genovesi, S., F. Costa, and A. Monorchio, "Low-profile array with reduced radar cross section by using hybrid frequency selective surfaces," IEEE Trans. Antennas Propag., Vol. 60, No. 5, 2327-2335, 2012.
    doi:10.1109/TAP.2012.2189701

    13. Agarwal, K., Nasimuddin, and A. Alphones, "Unidirectional wideband circularly polarized aperture antennas backed with artificial magnetic conductor reflectors," IET Microw. Antennas Propag., Vol. 7, No. 5, 338-346, 2013.
    doi:10.1049/iet-map.2012.0580

    14. Agarwal, K., Nasimuddin, and A. Alphones, "Wideband circularly polarized AMC reflector backed aperture antenna," IEEE Trans. Antennas Propag., Vol. 61, No. 3, 1456-1461, 2013.
    doi:10.1109/TAP.2012.2227446

    15. Zhang, J. J., J. H. Wang, M. E. Chen, and Z. Zhang, "RCS reduction of patch array antenna by electromagnetic band-gap structure," IEEE Antennas Wireless Propag. Lett., Vol. 11, 1048-1051, 2012.
    doi:10.1109/LAWP.2012.2215832

    16. Zheng, Y. J., J. Gao, X. Y. Cao, Z. D. Yuan, and H. H. Yang, "Wideband RCS reduction of a microstrip antenna using artificial magnetic conductor structures," IEEE Antennas Wireless Propag. Lett., Vol. 14, 1582-1585, 2015.
    doi:10.1109/LAWP.2015.2413456

    17. Simovski, C. R., P. D. Maagt, and I. V. Melchakova, "High-impedance surfaces having stable resonance with respect to polarization and incidence angle," IEEE Trans. Antennas Propag., Vol. 53, No. 3, 908-914, 2005.
    doi:10.1109/TAP.2004.842598

    18. Maci, S., M. Caiazzo, A. Cucini, and M. Casaletti, "A pole-zero matching method for EBG surfaces composed of a dipole FSS printed on a grounded dielectric slab," IEEE Trans. Antennas Propag., Vol. 53, No. 1, 70-81, 2005.
    doi:10.1109/TAP.2004.840520

    19. Yang, P., F, Yan, F, Yang, and T. Dong, "Microstrip phase-array in-band RCS reduction with a random rotation technique," IEEE Trans. Antennas Propag., Vol. 64, No. 6, 2513-2518, 2016.
    doi:10.1109/TAP.2016.2543781