A single-layer reflectarray antenna using circular patch with four semicircular ring slots is proposed in this paper. By changing the diameter of the circular patch, the proposed phasing element can realize phase range about 500 degrees with relatively stable reflection magnitude. Besides, the reflection phase curve with smooth slope is almost linear. Based on the good phase response, a 421-element reflectarray is designed, simulated and fabricated. The measured results show that 1.5-dB gain bandwidth can attain 24% at the center frequency of 15 GHz.
2. Guo, L., P. K. Tan, and T. H. Chio, "A simple method to realize polarization diversity in broadband reflectarrays using single-layered rectangular patch elements," Proc. IEEE Int. Symp. Antennas and Propagation USNC/URSI National Radio Science Meeting, 2161-2162, Jul. 2015.
3. Zhang, F. and J. Zhang, "Design and analysis of a reflectarray using defected double-square rings for microwave application," Proc. 8th Int. Symp. Computational Intelligence and Design (ISCID), Vol. 2, 594-597, Dec. 2015.
4. Xue, F., H. J. Wang, M. Yi, G. Liu, and X. C. Dong, "Design of a broadband single-layer linearly polarized reflectarray using four-arm spiral elements," IEEE Antennas and Wireless Propagation Letters, No. 99, 2016.
5. Ortiz-Fuentes, J. A., J. Silva-Montero, J. I. Martinez-Lopez, J. Rodriguez-Cuevas, and A. E. Martynyuk, "Dual-frequency reflectarray based on split ring slots," IEEE Antennas and Wireless Propagation Letters, 2016.
6. Malfajani, R. S. and Z. Atlasbaf, "Design and implementation of a broadband single layer circularly polarized reflectarray antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 973-976, 2012.
doi:10.1109/LAWP.2012.2213570
7. Fakharian, M. M., P. Rezaei, and A. A. Orouji, "A novel reflectarray based on the folded SIR patch-slot configuration," Proc. 8th European Conf. Antennas and Propagation (EuCAP 2014), 1931-1933, Apr. 2014.
doi:10.1109/EuCAP.2014.6902179
8. Rouzbahani, S., A. Z. Nezhad, and M. M. Ali, "Design of reflectarray with cosecant squared radiation pattern in x-band," Proc. 24th Iranian Conf. Electrical Engineering (ICEE), 502-506, May 2016.
doi:10.1109/IranianCEE.2016.7585573
9. Deng, R., S. Xu, F. Yang, and M. Li, "A single-layer high-efficiency wideband reflectarray using hybrid design approach," IEEE Antennas and Wireless Propagation Letters, 2016.
10. Zarghani, Z. H. and Z. Atlasbaf, "A new broadband single-layer reflectarray antenna," Proc. 22nd Iranian Conf. Electrical Engineering (ICEE), 1619-1622, May 2014.
doi:10.1109/IranianCEE.2014.6999796
11. Malfajani, R. S. and Z. Atlasbaf, "Design and implementation of a dual-band single layer reflectarray in x and k bands," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 8, 4425-4431, Aug. 2014.
doi:10.1109/TAP.2014.2327137
12. Bialkowski, M. E. and K. H. Sayidmarie, "Investigations into phase characteristics of a single-layer reflectarray employing patch or ring elements of variable size," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 11, 3366-3372, Nov. 2008.
doi:10.1109/TAP.2008.2005470
13. Vita, P. D., A. Freni, G. L. Dassano, P. Pirinoli, and R. E. Zich, "Broadband element for high-gain single-layer printed reflectarray antenna," Electronics Letters, Vol. 43, No. 23, Nov. 2007.
14. Hasani, H., M. Kamyab, A. Mirkamali, and H. Eskandari, "Reflectarray antenna consisting of circular disk elements: Design and measurement," Proc. Asia-Pacific Microwave Conf., 1565-1568, Dec. 2010.
15. Sayidmarie, K. H. and M. E. Bialkowski, "Fractal unit cells of increased phasing range and low slopes for single-layer microstrip reflectarrays," Antennas Propagation IET Microwaves, Vol. 5, No. 11, 1371-1379, Aug. 2011.
doi:10.1049/iet-map.2010.0581