Vol. 66

Latest Volume
All Volumes
All Issues
2017-03-03

A Compact Wideband Short-Ended Metamaterial Antenna for Wireless Applications

By Naveen Mishra and Raghvendra Kumar Chaudhary
Progress In Electromagnetics Research Letters, Vol. 66, 93-98, 2017
doi:10.2528/PIERL17012503

Abstract

In this article, design and analysis of a compact wideband short-ended metamaterial antenna based on composite right and left handed transmission line (CRLH-TL) is presented. The proposed antenna is configured with two different shapes (Half ring and simple gap) of series gaps and short ended boundary condition. It offers wide bandwidth by placing two different shapes of series gaps in such a manner, so that the first resonance frequency, i.e., zeroth order resonance (ZOR), second resonance frequency and third resonance frequency occur near each other, and hence combination offers wide bandwidth. Because of the applied boundary conditions, resonant modes can be controlled by series parameters of the proposed antenna structure. Further, coplanar waveguide feeding technique is used which replaces the requirement of via and allows the fabrication of a single layer antenna prototype. The proposed antenna is modeled by using ANSYS HFSS 14.0, and simulated results are verified with experimental ones of the prototype. The simulated fractional bandwidth of the proposed antenna is 52.38% centered at 3.57 GHz. Furthermore, the proposed antenna provides an average broadside gain of 2.30 dBi with average radiation efficiency of 94.95% in the entire working band of antenna.

Citation


Naveen Mishra and Raghvendra Kumar Chaudhary, "A Compact Wideband Short-Ended Metamaterial Antenna for Wireless Applications," Progress In Electromagnetics Research Letters, Vol. 66, 93-98, 2017.
doi:10.2528/PIERL17012503
http://test.jpier.org/PIERL/pier.php?paper=17012503

References


    1. Caloz, C. and T. Itoh, Electromagnetic Metamaterials: Transmission Line Approach and Microwave Applications, Wiley, Hoboken, NJ, 2005.
    doi:10.1002/0471754323

    2. Ji, J. K., G. H. Kim, and W. M. Seong, "Bandwidth enhancement of metamaterial antennas based on composite right/left-handed transmission line," IEEE Antennas Wireless Propag. Lett., Vol. 9, 36-39, 2010.
    doi:10.1109/LAWP.2010.2041628

    3. Sanada, A., M. Kimura, I. Awai, C. Caloz, and T. Itoh, "A planar zeroth order resonator antenna using a left-handed transmission line," Proceedings of European Microwave Conference, 1341-1344, Amsterdam, 2004.

    4. Lee, H. M., "A compact zeroth-order resonant antenna employing novel composite right/left-handed transmission-line unit-cells structure," IEEE Antennas Wireless Propag. Lett., Vol. 10, 1377-1380, 2011.
    doi:10.1109/LAWP.2011.2177798

    5. Lai, A., K. M. K. H. Leong, and T. Itoh, "Infinite wavelength resonant antennas with monopolar radiation pattern based on periodic structures," IEEE Trans. Antennas Propag., Vol. 55, 868-876, 2007.
    doi:10.1109/TAP.2007.891845

    6. Liu, C. C., P. L. Chi, and Y. D. Lin, "Compact zeroth-order resonant antenna based on dual-arm spiral configuration," IEEE Antennas Wireless Propag. Lett., Vol. 11, 318-321, 2012.
    doi:10.1109/TAP.2011.2167907

    7. Zhu, J. and G. V. Eleftheriades, "A compact transmission-line metamaterial antenna with extended bandwidth," IEEE Antennas Wireless Propag. Lett., Vol. 8, 295-298, 2009.
    doi:10.1109/LAWP.2009.2036870

    8. Jang, T., J. Choi, and S. Lim, "Compact coplanar waveguide (CPW)-fed zeroth-order resonant antennas with extended bandwidth and high efficiency on vialess single layer," IEEE Trans. Antennas Propag., Vol. 59, 363-372, 2011.
    doi:10.1109/TAP.2010.2096191

    9. Chen, P. W. and F. C. Chen, "Asymmetric coplanar waveguide (ACPW) zeroth-order resonant (ZOR) antenna with high efficiency and bandwidth enhancement," IEEE Antennas Wireless Propag. Lett., Vol. 11, 527-530, 2012.
    doi:10.1109/LAWP.2012.2198191

    10. Yang, S. Y. and M. N. M. Kehn, "A bisected miniaturized ZOR antenna with increased bandwidth and radiation efficiency," IEEE Antennas Wireless Propag. Lett., Vol. 12, 159-162, 2013.
    doi:10.1109/LAWP.2013.2243696

    11. Chi, P.-L. and Y.-S. Shih, "Compact and bandwidth-enhanced zerothorder resonant antenna," IEEE Antennas Wireless Propag. Lett., Vol. 14, 285-288, 2015.
    doi:10.1109/LAWP.2014.2363087

    12. Mishra, N. and R. K. Chaudhary, "A miniaturized ZOR antenna with enhanced bandwidth for WiMAX applications," Microwave and Optical Technology Lett., Vol. 58, 71-75, 2016.
    doi:10.1002/mop.29494