Vol. 67

Latest Volume
All Volumes
All Issues
2017-04-15

A New Miniaturized Microstrip Branch-Line Coupler with Good Harmonic Suppression

By Guowei Lian, Zhang Wang, Zhouyan He, Zhiguang Zhong, Leming Sun, and Mudan Yu
Progress In Electromagnetics Research Letters, Vol. 67, 61-66, 2017
doi:10.2528/PIERL17021901

Abstract

A new miniaturized microstrip branch-line coupler with good harmonic suppression is proposed in this paper. The new structure has two significant advantages, which not only effectively reduces the occupied area to 20.4% of the conventional branch-line coupler at 0.96 GHz, but also has high 6th harmonic suppression performance. The measured results indicate that a bandwidth of more than 120 MHz has been achieved while the phase difference between S21 and S31 is within 90° ± 1°. The measured bandwidth of |S21| and |S31| within 3 ± 0.3 dB are 145 MHz and 150 MHz, respectively. Furthermore, the measured insertion loss is comparable to that of a conventional branch-line coupler. The new coupler can be easily implemented by using the standard printed-circuit-board etching processes and is very useful for wireless communication systems.

Citation


Guowei Lian, Zhang Wang, Zhouyan He, Zhiguang Zhong, Leming Sun, and Mudan Yu, "A New Miniaturized Microstrip Branch-Line Coupler with Good Harmonic Suppression," Progress In Electromagnetics Research Letters, Vol. 67, 61-66, 2017.
doi:10.2528/PIERL17021901
http://test.jpier.org/PIERL/pier.php?paper=17021901

References


    1. Pozar, D. M., Microwave Engineering, Ch 7, 333–337, 3rd Edition, Wiley, New York, 2005.

    2. Mohra, A., A. F. Sheta, and S. F. Mahmoud, "New compact 3 dB 0/180 microstrip coupler configurations," Applied Computational Electromagnetics Society (ACES) Journal, Vol. 19, No. 2, 108-112, Jul. 2004.

    3. Xiao, B., J. Hong, and B. Wang, "A novel UWB out-of-phase four-way power divider," Applied Computational Electromagnetics Society (ACES) Journal, Vol. 26, No. 10, 863-867, Oct. 2011.

    4. Shamaileh, K. A., A. Qaroot, N. Dib, and A. Sheta, "Design of miniaturized unequal split wilkinson power divider with harmonics suppression using non-uniform transmission lines," Applied Computational Electro-magnetics Society Journal, Vol. 26, No. 6, 530-538, Jun. 2011.

    5. Wu, Y. L., Z. J. Hou, and Y. A. Liu, "A novel single-layer microstrip coupler with arbitrary power division ratio and harmonics suppression," Electromagnetics, Vol. 34, No. 6, 497-512, Aug. 2014.
    doi:10.1080/02726343.2014.922776

    6. Wu, Y. L., S. Y. Zhang, S. W. Leung, Y. A. Liu, and Q. Xue, "An analytical design method for a novel dual-band unequal coupler with four arbitrary terminated resistances," IEEE Transactions on Industrial Electronics, Vol. 61, No. 10, 5509-5516, Oct. 2014.

    7. Wu, Y. L., W. N. Sun, S. W. Leung, Y. A. Liu, Y. L. Diao, and K. H. Chan, "Single-layer microstrip high-directivity coupled-line coupler with tight coupling," IEEE Trans. Microw. Theory Tech., Vol. 61, No. 2, 746-753, Feb. 2013.
    doi:10.1109/TMTT.2012.2235855

    8. Wu, Y. L., Z. Zhuang, Y. A. Liu, L. Deng, and Z. Ghassemlooy, "Wideband filtering power divider with ultra-wideband harmonic suppression and isolation," IEEE Access, Vol. 4, 6876-6882, 2016.
    doi:10.1109/ACCESS.2016.2613883

    9. Wu, Y. L., L. X. Jiao, Y. T. Du, and Y. A. Liu, "Wideband filter-integrated coupled-line coupler with unequal power division and inherent DC-block function," Microwave and Optical Technology Letters, Vol. 58, No. 1, 121-123, Jan. 2016.
    doi:10.1002/mop.29503

    10. Eccleston, K. W. and S. H. M. Ong, "Compact planar microstripline branch-line and rat-race couplers," IEEE Trans. Microw. Theory Tech., Vol. 51, No. 10, 2119-2125, Oct. 2003.
    doi:10.1109/TMTT.2003.817442

    11. Mondal, P. and A. Chakrabarty, "Design of miniaturized branch-line and rat-race hybrid couplers with harmonics suppression," IET Microw. Antennas Propag., Vol. 3, No. 1, 109-116, Jan. 2009.
    doi:10.1049/iet-map:20070202

    12. Gu, J. and X. Sun, "Miniaturization and harmonic suppression of branch-line and rat-race hybrid coupler using compensating spiral compact micostrip resonant cell," IEEE MTT-S Int. Dig., 1211-1214, 2005.

    13. Wang, J., B.-Z. Wang, Y. X. Guo, L. C. Ong, and S. Xiao, "A compact slow-wave microstrip branch-line coupler with high performance," IEEE Microw. Wirel. Compon. Lett., Vol. 17, No. 7, 501-503, Jul. 2007.
    doi:10.1109/LMWC.2007.899307

    14. Velidi, V. K., B. Patel, and S. Sanval, "Harmonic suppressed compact wideband branch-line coupler using unequal length open-stub units," International Journal of RF and Microwave Computer- Aided Engineering, Vol. 21, No. 1, 115-119, Jan. 2011.
    doi:10.1002/mmce.20495

    15. Tsai, K. Y., H. S. Yang, J. H. Chen, and Y. J. Chen, "A miniaturized 3 dB branch-line hybrid coupler with harmonics suppression," IEEE Microw. Wirel. Compon. Lett., Vol. 21, No. 10, 537-539, Oct. 2011.
    doi:10.1109/LMWC.2011.2164901

    16. Velidi, V. K., A. Pal, and S. Sanyal, "Harmonics and size reduced microstrip branch-line baluns using shunt open-stubs," International Journal of RF and Microwave Computer-aided Engineering, Vol. 21, No. 2, 115-119, Mar. 2011.
    doi:10.1002/mmce.20495