Vol. 69

Latest Volume
All Volumes
All Issues
2017-07-05

Butter Fly Shape Compact Microstrip Antenna for Wideband Applications

By Rakesh Nath Tiwari, Prabhakar Singh, and Binod Kanaujia
Progress In Electromagnetics Research Letters, Vol. 69, 45-50, 2017
doi:10.2528/PIERL17042703

Abstract

In this article, a novel design of butterfly-shaped compact and small size microstrip antenna is proposed. The radiating structure consists of four circular discs in coalesced form and fed with coaxial probe. The initial antenna resonates at 9.64 GHz with impedance bandwidth of 11.41%. The resonance frequency is further reduced to 8.12 GHz with bandwidth 10.10%, when a rectangular slot is incorporated in the initial patch. Finally, two parallel slots are embedded in the initial patch which improves the antenna bandwidth up to 21.50% (6.02-7.47 GHz). The gain and efficiency of this antenna are above 8.80 dBi and 90% respectively across the entire operating band. Radiation pattern is calculated at lower end (6.02 GHz), upper end (7.47 GHz) and centre frequency (6.75 GHz) of operating band. The proposed antenna is fabricated, and measured results are validated with the simulated ones.

Citation


Rakesh Nath Tiwari, Prabhakar Singh, and Binod Kanaujia, "Butter Fly Shape Compact Microstrip Antenna for Wideband Applications," Progress In Electromagnetics Research Letters, Vol. 69, 45-50, 2017.
doi:10.2528/PIERL17042703
http://test.jpier.org/PIERL/pier.php?paper=17042703

References


    1. Shackelford, A. K., K.-F. Lee, and K. M. Luk, "Design of small-size wide-bandwidth microstrip-patch antennas," IEEE Antennas and Propag. Magazine, Vol. 45, No. 1, 75-83, 2003.
    doi:10.1109/MAP.2003.1189652

    2. Xiong, J., Z. Ying, and S. He, "A broadband low profile patch antenna of compact size with three resonators," IEEE Trans. Antennas Propag. Magazine, Vol. 57, No. 6, 1838-1843, 2009.
    doi:10.1109/TAP.2009.2016792

    3. Pandey, G. P., B. K. Kanaujia, A. K. Gautam, and S. K. Gupta, "Ultra-wideband L-strip proximity coupled slot loaded circular microstrip antenna for modern communication systems," Wireless Personal Communication, Vol. 70, No. 1, 139-151, 2013.
    doi:10.1007/s11277-012-0684-5

    4. Deshmukh, A. A. and K. P. Ray, "Broadband proximity-fed square-ring microstrip antennas," IEEE Antennas Propag. Magazine,, Vol. 56, No. 2, 89-107, 2014.
    doi:10.1109/MAP.2014.6837068

    5. Chen, H.-D., "Broadband designs of coplanar capacitively-fed shorted patch antennas," IET Microwave Antennas Propagation, Vol. 2, No. 6, 574-579, 2008.
    doi:10.1049/iet-map:20070312

    6. Wi, S.-H., Y.-S. Lee, and J.-G. Yook, "Wideband microstrip patch antenna with U-shaped parasitic elements," IEEE Trans. Antennas Propag., Vol. 55, No. 4, 1196-1199, 2007.
    doi:10.1109/TAP.2007.893427

    7. Khodaei, G. F., J. Nourinia, and C. Ghobadi, "A practical miniaturized U-slot patch antenna with enhanced bandwidth," Progress In Electromagnetics Research B, Vol. 3, 47-62, 2008.
    doi:10.2528/PIERB07112201

    8. Neyestanak, A. A. L., F. H. Kashni, and K. Barkeshli, "W-shaped enhanced-bandwidth patch antenna for wireless communications," Wireless Personal Communication, Vol. 43, No. 4, 1257-1265, 2007.
    doi:10.1007/s11277-007-9299-7

    9. Ansari, J. A., P. Singh, S. K. Dubey, R. U. Khan, and B. R. Vishvakarma, "Analysis of stacked V-slot loaded patch antenna for wideband application," Microwave Optical Technology Letter, Vol. 51, No. 2, 324-330, 2009.
    doi:10.1002/mop.24031

    10. Xie, J.-J., Y.-Z. Yin, S.-L. Pan, and L. Sun, "A novel circular slot antenna with two pairs of t-shaped slots for WLAN/WIMAX applications," Progress In Electromagnetics Research Letters, Vol. 32, 49-57, 2012.
    doi:10.2528/PIERL12040606

    11. Krishna, D. D., M. Gopikrihna, C. K. Aanandan, P. Mohanan, and K. Vasudevan, "Compact wideband koch fractal printed slot antenna," IET Microwave Antennas Propag., Vol. 3, No. 5, 782-789, 2009.
    doi:10.1049/iet-map.2008.0210

    12. Sung, Y. J., "Bandwidth enhancement of a wide slot using fractal-shaped sierpinski," IEEE Trans. Antennas Propag., Vol. 59, No. 8, 3076-3079, 2011.
    doi:10.1109/TAP.2011.2158942

    13. Malekpoor, H. and S. Jam, "Miniaturised asymmetric E-shaped microstrip patch antenna with folded-patch feed," IET Microwave Antennas Propag., Vol. 7, No. 2, 85-91, 2013.
    doi:10.1049/iet-map.2012.0266

    14. Sun, D. and L. You, "A broadband impedance matching method for proximity-coupled microstrip antenna," IEEE Trans. Antennas Propag., Vol. 58, No. 4, 1392-1397, 2010.
    doi:10.1109/TAP.2010.2041312

    15. Matin, M. A., B. S. Sharif, and C. C. Tsimenidis, "Probe fed stacked patch antenna for wideband applications," IEEE Trans. Antennas Propag., Vol. 55, No. 8, 2385-2388, 2007.
    doi:10.1109/TAP.2007.901924

    16. Ang, B. K. and B. K. Chung, "A wideband E-shaped microstrip patch antenna for 5-6 GHz wireless communications," Progress In Electromagnetics Research, Vol. 75, 397-407, 2007.
    doi:10.2528/PIER07061909

    17. Islam, M. T., "Design analysis of high gain wideband L-probe fed microstrip patch antenna," Progress In Electromagnetics Research, Vol. 95, 397-407, 2009.
    doi:10.2528/PIER09080204

    18. Ansari, J. A., P. Singh, and N. P. Yadav, "Analysis of shorting pin loaded half disk patch antenna for wideband operation," Progress In Electromagnetic Research C, Vol. 6, 179-192, 2009.
    doi:10.2528/PIERC09011203

    19. Zarrabi, F. B., R. Ahmadian, M. Rahimi, and Z. Mansouri, "Dual band antenna designing with composite right/left handed," Microwave Optical Technology Letter, Vol. 57, No. 4, 774-779, 2015.
    doi:10.1002/mop.28960