This paper presents a compact diplexer with high selectivity. The proposed diplexer employs two sets of triple-mode bandpass lters. Using this approach, the pair of even-mode resonant frequencies can be flexibly controlled by adjusting the characteristic impedance or electrical lengths of the two open-circuited stubs while the odd-mode resonant frequency remains at the fundamental resonant frequency. For a demonstration, a diplexer with two passbands centred at 1.50 and 1.70 GHz and the transmission zeros are created close to the passband edges which extremely improve the skirt selectivity. As a result, the proposed diplexer occupies an extremely small area, i.e., approximately 0.30λg x 0.35λg. The measured results are in good agreement with the simulated predictions.
2. Chen, C. F., T. Y. Huang, C. P. Chou, and R. B. Wu, "Microstrip diplexers design with common resonator sections for compact size, but high isolation," IEEE Tran. Microw. Theory Tech., Vol. 54, No. 5, 1945-1952, 2006.
doi:10.1109/TMTT.2006.873613
3. Chen, F. C., et al., "Design of wide-stopband bandpass filter and diplexer using uniform impedance resonators," IEEE Tran. Microw. Theory Tech., Vol. 64, No. 12, 4192-4203, 2016.
doi:10.1109/TMTT.2016.2613056
4. Srisathit, S., S. Patisang, R. Phromloungsri, S. Bunnjaweht, S. Kosulvit, and M. Chongcheawchamnan, "Design of wide-stopband bandpass filter and diplexer using uniform impedance resonators," IEEE Microw. Wireless Compon. Lett., Vol. 15, No. 2, 101-103, 2005.
doi:10.1109/LMWC.2004.842839
5. Chuang, M. L. and M. T. Wu, "Microstrip diplexer design using common T-shaped resonator," IEEE Microw. Wireless Compon. Lett., Vol. 21, No. 11, 583-585, 2011.
doi:10.1109/LMWC.2011.2168949
6. Chen, F. C., T. M. Shen, T. Y. Huang, and R. B. Wu, "Design of multimode net-type resonators and their applications to filters and multiplexers," IEEE Tran. Microw. Theory Tech, Vol. 59, No. 4, 848-856, 2011.
doi:10.1109/TMTT.2011.2109392
7. Yang, T., P. L. Chi, and T. Itoh, "High isolation and compact diplexer using the hybrid resonators," IEEE Microw. Wireless Compon. Lett., Vol. 20, No. 10, 551-553, 2010.
doi:10.1109/LMWC.2010.2052793
8. Li, Z. P., L. J. Zhang, T. Su, and C. H. Liang, "A compact microstrip quadruplexer using slotline stepped impedance stub loaded resonators," Progress In Electromagnetics Research, Vol. 140, 509-522, 2013.
doi:10.2528/PIER13042105
9. Chen, J. Z., N. Wang, K. Deng, and S. Yang, "Design of compact quadruplexer based on defected stepped impedance resonators," Progress In Electromagnetics Research, Vol. 119, 19-33, 2011.
doi:10.2528/PIER11061301
10. Guan, X., F. Yang, H. Liu, and L. Zhu, "Compact and high-isolation diplexer using dual-mode stub-loaded resonators," IEEE Microw. Wireless Compon. Lett., Vol. 24, No. 6, 385-387, 2014.
doi:10.1109/LMWC.2014.2313591
11. Weng, S. C., K. W. Hsu, and W. H. Tu, "Switchable and high-isolation diplexer with wide stopband," IEEE Microw. Wireless Compon. Lett., Vol. 24, No. 6, 373-375, 2014.
doi:10.1109/LMWC.2014.2313476
12. Huang, F., J. Wang, L. Zhu, and W. Wu, "Compact microstrip balun diplexer using stub-loaded dual-mode resonators," Electron. Lett., Vol. 52, No. 24, 1994-1996, 2016.
doi:10.1049/el.2016.3302
13. Chen, C. F., T. M. Shen, T. Y. Huang, and R. B. Wu, "Design of compact quadruplexer based on the tri-mode net-type resonators," IEEE Microw. Wireless Compon. Lett., Vol. 21, No. 10, 534-536, 2011.
doi:10.1109/LMWC.2011.2165278
14. Chen, Y. W., H. W. Wu, Z. J. Dai, and Y. K. Su, "Design of compact six-channel diplexer," IEEE Microw. Wireless Compon. Lett., Vol. 26, No. 10, 792-794, 2016.
doi:10.1109/LMWC.2016.2604868