This paper presents the design and analysis of a planar pattern reconfigurable antenna for WLAN applications. The proposed design makes use of four Vee dipoles placed around a center input probe. The directional beam generated can be reconfigured to any one of the four directions in the azimuth plane. The antenna pattern can be controlled by means of switches provided to connect the Vee dipoles to the input port. The design and analysis of the parameters show the scalability of the design to adapt to any frequency of choice. To validate the concept, an antenna is designed for the WLAN frequency of 5.3 GHz, and a prototype is fabricated. The measured results match closely to that of simulated results. The gain provided by the antenna is noted as 7.5 dBi. The planar structure and simple design of the antenna enable this antenna to be useful for modern pattern reconfigurable communication systems.
2. Faiz, A. M., N. Gogosh, A. Rehman, M. F. Shafique, B. Poussot, and J. M. Laheurte, "Pattern diversity antenna with high-temperature tolerance for body area networks," IET Microwaves, Antennas & Propag., Vol. 10, No. 2, 162-167, 2016.
doi:10.1049/iet-map.2015.0342
3. Hsu, S.-E., W.-J.Liao, W.-H.Lee, and S.-H.Chang, "A beam switching planar Yagi-patch array for automotive applications," PIERS Online, Vol. 6, No. 4, 350-354, 2010.
doi:10.2529/PIERS090904050946
4. Koley, S., L. Murmu, and B. Pal, "pattern reconfigurable antenna for WLAN and WiMAX systems," Progress In Electromagnetics Research C, Vol. 66, 183-190, 2016.
doi:10.2528/PIERC16052306
5. Yang, G., M. R. Islam, R. A. Dougal, and M. Ali, "A reconfigurable stacked patch antenna for wireless power transfer and data telemetry in sensors," Progress In Electromagnetics Research C, Vol. 29, 67-81, 2012.
doi:10.2528/PIERC12020908
6. Haupt, R. L. and M. Lanagan, "Reconfigurable antennas," IEEE Antennas Propag. Mag., Vol. 55, No. 1, 49-61, Feb. 2013.
doi:10.1109/MAP.2013.6474484
7. Sabapathy, T., M. F. B. Jamlos, R. B. Ahmad, M. Jusoh, M. I. Jais, and M. R. Kamarudin, "Electronically reconfigurable beam steering antenna using embedded RF pin based parasitic arrays (ERPPA)," Progress In Electromagnetics Research, Vol. 140, 241-261, 2013.
doi:10.2528/PIER13042906
8. Li, Z., E. Ahmed, A. M. Eltawil, and B. A. Cetiner, "A beam-steering reconfigurable antenna for WLAN applications," IEEE Trans. Antennas Propag., Vol. 63, No. 1, 24-32, Jan. 2015.
doi:10.1109/TAP.2014.2367500
9. Misra, I. S., R. S. Chakrabarty, and B. B. Mangaraj, "Design, analysis and optimization of v-dipole and its three-element Yagi-Uda array," Progress In Electromagnetics Research, Vol. 66, 137-156, 2006.
doi:10.2528/PIER06102604
10. Zuo, S., Q.-Q. Liu, and Z.-Y. Zhang, "Wideband dual-polarized crossed-dipole antenna with parasitical crossed-strip for base station applications," Progress In Electromagnetics Research C, Vol. 48, 159-166, 2014.
doi:10.2528/PIERC14021101
11. Qin, P. Y., Y. J. Guo, and C. Ding, "A beam switching quasi-yagi dipole antenna," IEEE Trans. Antennas Propag., Vol. 61, No. 10, 4891-4899, Oct. 2013.
doi:10.1109/TAP.2013.2274635
12. Alam, M. S. and A. M. Abbosh, "Beam-steerable planar antenna using circular disc and four PIN-controlled tapered stubs for WiMAX and WLAN applications," IEEE Antennas and Wireless Propag. Lett., Vol. 15, 980-983, 2016.
doi:10.1109/LAWP.2015.2489684
13. Zhang, T., S. Y. Yao, and Y. Wang, "Design of radiation-pattern-reconfigurable antenna with four beams," IEEE Antennas and Wireless Propag. Lett., Vol. 14, 183-186, 2015.
doi:10.1109/LAWP.2014.2360098
14. Balanis, C. A., Antenna Theory: Analysis and Design, 3rd Ed., Wiley, 2004.
15. Thiele and Ekelman, "Design formulas for V-dipoles," IEEE Trans. Antennas Propag., No. 7, 1980.
16. Yao, Y. and Z. Feng, "Novel switched sector beam planar UWB antenna," Microwave and Optical Technology Lett., Vol. 49, No. 5, 1185-1187, 2007.
doi:10.1002/mop.22388