Vol. 71

Latest Volume
All Volumes
All Issues
2017-10-25

Terahertz Graphene-Based Reconfigurable Patch Antenna

By Mohamed Karim Azizi, Mohamed Amin Ksiksi, Hosni Ajlani, and Ali Gharsallah
Progress In Electromagnetics Research Letters, Vol. 71, 69-76, 2017
doi:10.2528/PIERL17081402

Abstract

The radiation properties of a copper-patch antenna designed for resonating at the frequency of 0.7 THz, which is used in aerospace applications, is presented. These properties are then compared to those of a graphene-patch antenna presenting the same dimensions. We show how the use of graphene, as a tunable material, allows to dynamically modify the frequency of operation of the antenna as well as its radiation pattern. Our results show that the return loss peak reaches -29 dB, at the operating frequency, which is almost twice the value obtained with the copper patch. This increase in the return loss peak is also accompanied by an improvement in the gain of the antenna from 5.73 dB in the case of the copper patch to 7.16 dB in the case of graphene. We focus our interest on how the reconfigurable radiation properties of the graphene-patch antenna are directly related to the graphene surface conductivity.

Citation


Mohamed Karim Azizi, Mohamed Amin Ksiksi, Hosni Ajlani, and Ali Gharsallah, "Terahertz Graphene-Based Reconfigurable Patch Antenna," Progress In Electromagnetics Research Letters, Vol. 71, 69-76, 2017.
doi:10.2528/PIERL17081402
http://test.jpier.org/PIERL/pier.php?paper=17081402

References


    1. Jornet, J. M. and I. F. Akyildiz, "Graphene-based nano-antennas for electromagnetic nanocommunications in the terahertz band," Antennas Propag. EuCAP 2010 Proc. Fourth Eur. Conf., 1-5, 2010.

    2. Geizutis, A., et al., "Terahertz radiation emitters and detectors," Opt. Mater. (Amst)., Vol. 30, 786-788, 2008.
    doi:10.1016/j.optmat.2007.02.039

    3. Siegel, P. H., "Terahertz technology," IEEE Trans. Microw. Theory Tech., Vol. 50, 910-928, 2002.
    doi:10.1109/22.989974

    4. Zhu, B., Y. Chen, K. Deng, W. Hu, and Z. S. Yao, "Terahertz science and technology and applications," PIERS Proceedings, 1166-1170, Beijing, China, Mar. 23-27, 2009.

    5. Koutsoupidou, M., I. S. Karanasiou, and N. Uzunoglu, "Rectangular patch antenna on split-ring resonators substrate for THz brain imaging: Modeling and testing," 13th IEEE Int. Conf. Bioinforma. Bioeng. IEEE BIBE 2013, 9-12, 2013.

    6. Kashyap, S. S. and V. Dwivedi, "Stacked swastika shape microstrip patch antenna for terahertz applications," Proc. 2014 2nd Int. Conf. “Emerging Technol. Trends Electron. Commun. Networking”, ET2ECN 2014, 1-5, 2015.

    7. Tan, P., J. Huang, K. Liu, Y. Xiong, and M. Fan, "Terahertz radiation sources based on free electron lasers and their applications," Sci. China Inf. Sci., Vol. 55, 1-15, 2012.
    doi:10.1007/s11432-011-4515-1

    8. Kim, K. Y., A. J. Taylor, J. H. Glownia, and G. Rodriguez, "Coherent control of terahertz supercontinuum generation in ultrafast laser-gas interactions," Nat. Photonics, Vol. 2, 605-609, 2008.
    doi:10.1038/nphoton.2008.153

    9. Pierantoni, L., M. Bozzi, R. Moro, D. Mencarelli, and S. Bellucci, "On the use of electrostatically doped graphene: Analysis of microwave attenuators," 2014 Int. Conf. Numer. Electromagn. Model. Optim. RF, Microwave, Terahertz Appl. NEMO 2014, 8-11, 2014.

    10. Kemp, M. C., P. F. Taday, B. E. Cole, J. A. Cluff, A. J. Fitzgerald, and W. R. Tribe, Security Applications of Terahertz Technology, Vol. 5070, 44-52, 2003.
    doi:10.1117/12.500491

    11. Watts, C. M., et al., "Terahertz compressive imaging with metamaterial spatial light modulators," Nat. Photonics, Vol. 8, 605-609, 2014.
    doi:10.1038/nphoton.2014.139

    12. Siegel, P. H., "THz Technology in biology and medicine, instrumentation," IEEE Transactions on Microwave Theory and Techniques, Vol. 52, 0-3, 2004.
    doi:10.1109/TMTT.2004.835916

    13. Cai, Y., Y. J. Guo, P. Y. Qin, and A. R. Weily, "Frequency reconfigurable quasi-Yagi dipole antenna," 2010 IEEE Int. Symp. Antennas Propag. CNC-USNC/URSI Radio Sci. Meet. --- Lead. Wave, AP-S/URSI 2010, Vol. 58, 2742-2747, 2010.

    14. Piazza, D., P. Mookiah, M. D’Amico, and K. R. Dandekar, "Pattern and polarization reconfigurable circular patch for MIMO systems," 3rd European Conference on Antennas Propagation, 2009, EuCAP 2009, Vol. 59, 1047-1051, 2009.

    15. Chang, Z., L. S. Wu, M. Tang, Y. P. Zhang, and J. F. Mao, "Generation of THz wave with orbital angular momentum by graphene patch reflectarray," 2015 IEEE MTT-S Int. Microw. Work. Ser. Adv. Mater. Process. RF THz Appl. IEEE MTT-S IMWS-AMP 2015 --- Proc., 9-11, 2015.

    16. Mazlouman, S. J., M. Soleimani, A. Mahanfar, C. Menon, and R. G. Vaughan, "Pattern reconfigurable square ring patch antenna actuated by hemispherical dielectric elastomer," Electron. Lett., Vol. 47, 164-U22, 2011.
    doi:10.1049/el.2010.3585

    17. Surface, H., Y. Huang, L.-S.Wu, M. Tang, J. Mao, and H. Surface, "Design of a beam reconfigurable THz antenna with graphene-based switchable," IEEE Trans. Nanotechnology, Vol. 11, 836-842, 2012.
    doi:10.1109/TNANO.2012.2202288

    18. Geim, A. K. and K. S. Novoselov, "The rise of graphene," Nat. Mater., Vol. 6, 183-191, 2007.
    doi:10.1038/nmat1849

    19. Falkovsky, L. A., "Optical properties of graphene," Journal of Physics: Conference Series, Vol. 129, 1, 2008.
    doi:10.1088/1742-6596/129/1/012004

    20. Loh, K. P., Q. Bao, G. Eda, and M. Chhowalla, "Graphene oxide as a chemically tunable platform for optical applications," Nat. Chem., Vol. 2, 1015-1024, 2010.
    doi:10.1038/nchem.907

    21. Castro Neto, A. H., N. M. R. Peres, K. S. Novoselov, and A. K. Geim, "The electronic properties of graphene," Rev. Mod. Phys., Vol. 81, 109-162, 2009.
    doi:10.1103/RevModPhys.81.109

    22. Ajlani, H., M. K. Azizi, A. Gharsallah, and M. Oueslati, "Graphene-GaAs-graphene stacked layers for the improvement of the transmission at the wavelength of 1.55 μm," Opt. Mater., Vol. 57, 120-124, 2016.
    doi:10.1016/j.optmat.2016.04.031

    23. Ajlani, H., M. Karim, A. Gharsallah, and A. Meftah, "Graphene-based reconfigurable transmission filter near the wavelength of 1. 55 μm," Opt. Mater., Vol. 66, 201-206, 2017.
    doi:10.1016/j.optmat.2017.02.016

    24. Zhang, J., G. Wang, B. Zhang, T. He, Y. He, and J. Shen, "Photo-excited broadband tunable terahertz metamaterial absorber," Opt. Mater. (Amst)., Vol. 54, 32-36, 2016.
    doi:10.1016/j.optmat.2016.02.011

    25. Hanson, G. W., "Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene," J. Appl. Phys., 103, 2008.

    26. Gusynin, V. P., S. G. Sharapov, and J. P. Carbotte, "Magneto-optical conductivity in graphene," J. Phys. Condens. Matter., Vol. 19, 026222, 2007.
    doi:10.1088/0953-8984/19/2/026222