Vol. 71

Latest Volume
All Volumes
All Issues
2017-11-01

Nonlinear Metamaterial Composite Structure with Tunable Tunneling Frequency

By Tuanhui Feng, Hongpei Han, Limin Wang, and Fei Yang
Progress In Electromagnetics Research Letters, Vol. 71, 91-96, 2017
doi:10.2528/PIERL17081405

Abstract

A nonlinear metamaterial composite structure with tunable tunneling frequency is presented. Based on theoretical calculation results, a nonlinear metamaterial sandwich structure constructed by epsilon negative metamaterial (ENM), mu negative metamaterial (MNM) and nonlinear double negative metamaterial (NDNM) is designed, and its nonlinear properties are investigated. The measured results show that the tunneling frequency of the sandwich structure ENM-NDNM-MNM can be controlled conveniently by signal power.

Citation


Tuanhui Feng, Hongpei Han, Limin Wang, and Fei Yang, "Nonlinear Metamaterial Composite Structure with Tunable Tunneling Frequency," Progress In Electromagnetics Research Letters, Vol. 71, 91-96, 2017.
doi:10.2528/PIERL17081405
http://test.jpier.org/PIERL/pier.php?paper=17081405

References


    1. Smith, D. R. and N. Kroll, "Negative refractive index in left-handed material," Phys. Rev. Lett., Vol. 85, 2933, 2000.
    doi:10.1103/PhysRevLett.85.2933

    2. Grbic, A. and G. V. Eleftheriades, "Overcoming the diffraction limit with a planar left-handed transmission-line lens," Phys. Rev. Lett., Vol. 92, 117403, 2004.
    doi:10.1103/PhysRevLett.92.117403

    3. Pendry, J. B., D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science, Vol. 312, 1780, 2006.
    doi:10.1126/science.1125907

    4. Ginis, V., P. Tassin, C. M. Soukoulis, and I. Veretennicoff, "Enhancing optical gradient forces with metamaterials," Phys. Rev. Lett., Vol. 110, 057401, 2013.
    doi:10.1103/PhysRevLett.110.057401

    5. Sreekanth, K. V., A. D. Luca, and G. Strangi, "Negative refraction in graphene-based hyperbolic metamaterials," Appl. Phys. Lett., Vol. 103, 023107, 2013.
    doi:10.1063/1.4813477

    6. Henriquez, V. C., V. M. Garcia-Chocano, and J. Sanchez-Dehesa, "Viscothermal losses in double-negative acoustic metamaterials," Phys. Rev. Appl., Vol. 8, 014029, 2017.
    doi:10.1103/PhysRevApplied.8.014029

    7. Alu, A. and N. Engheta, "Pairing an epsilon-negative slab with a mu-negative slab: Resonance, tunneling and transparency," IEEE Trans. Antennas Propagat., Vol. 51, 2558, 2003.
    doi:10.1109/TAP.2003.817553

    8. Fujishige, T., C. Caloz, and T. Itoh, "Experiment demonstration of transparency in the ENG-MNG pair in a CRLH transmission-line implementation," Microwave Opt. Tech. Lett., Vol. 46, 476, 2005.
    doi:10.1002/mop.21022

    9. Feng, T. H., Y. H. Li, J. Y. Guo, L. He, H. Q. Li, Y. W. Zhang, Y. L. Shi, and H. Chen, "Highly localized mode in a structure made of epsilon-negative and mu-negative metamaterial," J. Appl. Phys., Vol. 104, 013107, 2008.
    doi:10.1063/1.2949264

    10. Feng, T. H., Y. H. Li, H. T. Jiang, Y. Sun, L. He, H. Q. Li, Y. W. Zhang, Y. L. Shi, and H. Chen, "Electromagnetic tunneling in a sandwich structure containing single negative media," Phys. Rev. E, Vol. 79, 026601, 2009.
    doi:10.1103/PhysRevE.79.026601

    11. Jiang, H. T., H. Chen, H. Q. Li, Y. W. Zhang, J. Zi, and S. Y. Zhu, "Properties of one-dimensional photonic crystals containing single-negative materials," Phys. Rev. E, Vol. 69, 066607, 2004.
    doi:10.1103/PhysRevE.69.066607

    12. Zhang, L. W., Y. W. Zhang, L. He, H. Q. Li, and H. Chen, "Experimental study of photonic crystals consisting of ε-negative and μ-negative materials," Phys. Rev. E, Vol. 74, 056615, 2006.
    doi:10.1103/PhysRevE.74.056615

    13. Wang, Z. L., H. T. Jiang, Y. H. Li, and H. Chen, "Enhancement of self-collimated fields in photonic crystals consisting of two kinds of single-negative materials," Opt. Express, Vol. 18, 14311, 2010.
    doi:10.1364/OE.18.014311

    14. Feng, T. H., et al., "Light tunneling effect tuned by a meta-interface with electromagnetically-induced-transparency-like properties," Appl. Phys. Lett., Vol. 102, 251908, 2013.
    doi:10.1063/1.4810020

    15. Shadrivov, I. V., A. A. Zharov, and Y. S. Kivshar, "Second-harmonic generation in nonlinear left-handed metamaterials," J. Opt. Soc. Am. B, Vol. 23, 529, 2006.
    doi:10.1364/JOSAB.23.000529

    16. Litchinitser, N. M., I. R. Gabitov, and A. I. Maimistov, "Optical bistability in a nonlinear optical coupler with a negative index channel," Phys. Rev. Lett., Vol. 99, 113902, 2007.
    doi:10.1103/PhysRevLett.99.113902

    17. Wang, Z. Y., et al., "Harmonic image reconstruction assisted by a nonlinear metmaterial surface," Phys. Rev. Lett., Vol. 106, 047402, 2011.
    doi:10.1103/PhysRevLett.106.047402

    18. De Ceglia, D., et al., "Second-harmonic double-resonance cones in dispersive hyperbolic metamaterials," Phys. Rev. B, Vol. 89, 075123, 2014.
    doi:10.1103/PhysRevB.89.075123

    19. Nouri, N. and M. Zavvari, "Second-harmonic generation in iii-nitride quantum wells enhanced by metamaterials," IEEE Photonics Technology Letters, Vol. 28, 2199, 2016.
    doi:10.1109/LPT.2016.2587680

    20. Deska, R., et al., "Nonlinear plasmonics in eutectic composites: Second harmonic generation and two-photon luminescence in a volumetric Bi2O3-Ag metamaterial," Appl. Phys. Lett., Vol. 110, 031102, 2017.
    doi:10.1063/1.4974208