Vol. 71

Latest Volume
All Volumes
All Issues
2017-11-10

A Novel and Compact UWB Bandpass Filter-Crossover Using Microstrip to CPS Transitions

By Mohamed Lamine Seddiki, Mourad Nedil, and Farid Ghanem
Progress In Electromagnetics Research Letters, Vol. 71, 103-108, 2017
doi:10.2528/PIERL17082703

Abstract

In this letter, a new compact UWB uniplanar crossover with bandpass filter characteristics is proposed and implemented. The UWB Filter-Crossover is composed of two novel UWB filters placed on the top and bottom of the substrate to obtain the crossover features. These proposed filters are based on microstrip to coplanar stripline (CPS) transitions and sections of CPS section line used as a multiple mode resonator (MMR). The simulated and measured results show a good result in terms of isolation, return loss and insertion loss in the entire UWB band.

Citation


Mohamed Lamine Seddiki, Mourad Nedil, and Farid Ghanem, "A Novel and Compact UWB Bandpass Filter-Crossover Using Microstrip to CPS Transitions," Progress In Electromagnetics Research Letters, Vol. 71, 103-108, 2017.
doi:10.2528/PIERL17082703
http://test.jpier.org/PIERL/pier.php?paper=17082703

References


    1. Seddiki, M. L., F. Ghanem, M. Nedil, and A. Bouklif, "Compact crossover on multilayer substrate for UWB applications," Electronics Letters, Vol. 53, 2017.
    doi:10.1049/el.2016.3682

    2. Tang, C. W., K. C. Lin, and W. C. Chen, "Analysis and design of compact and wide-passband planar crossovers," IEEE Transactions on Microwave Theory and Techniques, Vol. 62, 2975-2982, 2014.
    doi:10.1109/TMTT.2014.2364839

    3. Eom, S. Y., A. Batgerel, and L. Minz, "Compact broadband microstrip crossover with isolation improvement and phase compensation," IEEE Microwave and Wireless Components Letters, Vol. 24, 481-483, 2014.
    doi:10.1109/LMWC.2014.2303163

    4. Liu, A. W., Z. Zhang, Z. Feng, and M. F. Iskander, "A compact wideband microstrip crossover," IEEE Microwave and Wireless Components Letters, Vol. 22, 254-256, 2012.
    doi:10.1109/LMWC.2012.2190270

    5. Maktoomi, M. A., M. S. Hashmi, and F. M. Ghannouchi, "Systematic design technique for dual-band branch-line coupler using T- and Pi-networks and their application in novel wideband-ratio crossover," IEEE Transactions on Components, Packaging and Manufacturing Technology, Vol. 6, 784-795, 2016.
    doi:10.1109/TCPMT.2016.2548498

    6. Abbosh, A. M., "Wideband planar crossover using two-port and four-port microstrip to slotline transitions," IEEE Microwave and Wireless Components LettersIEEE Microwave and Wireless Components Letters, Vol. 22, 465-467, 2012.
    doi:10.1109/LMWC.2012.2209632

    7. Abbosh, A., S. Ibrahim, and M. Karim, "Ultra-wideband crossover using microstrip-to-coplanar waveguide transitions," IEEE Microwave and Wireless Components Letters, Vol. 22, 500-502, 2012.
    doi:10.1109/LMWC.2012.2218586

    8. Gao, T., Y. C. Li, S. Y. Zheng, and Y. X. Bao, "Patch crossover with bandpass filtering function," Microw. Opt. Technol. Lett., Vol. 58, Dec. 2016.

    9. Zhu, H., A. M. Abbosh, and L. Guo, "Wideband four-way filtering power divider with sharp selectivity and wide stopband using looped coupled-line structures," IEEE Microwave and Wireless Components Letters, Vol. 26, 413-415, 2016.
    doi:10.1109/LMWC.2016.2562107

    10. Wang, X., B. J. Hu, and H. L. Zhang, "Compact filtering crossover using stub-loaded ring resonator," IEEE Microwave and Wireless Components Letters, Vol. 24, 327-329, 2014.
    doi:10.1109/LMWC.2014.2309083

    11. Feng, W., Y. Zhang, and W. Che, "Wideband filtering crossover using dual-mode ring resonator," Electronics Letters, Vol. 52, 541-542, 2016.
    doi:10.1049/el.2015.4366

    12. Tornielli di Crestvolant, C. V., P. Martin Iglesias, and M. J. Lancaster, "Advanced butler matrices with integrated bandpass filter functions," IEEE Transactions on Microwave Theory and Techniques, Vol. 63, 3433-3444, 2015.
    doi:10.1109/TMTT.2015.2460739

    13. Ai, J., Y. Zhang, K. D. Xu, D. Li, and Y. Fan, "Miniaturized quint-band bandpass filter based on multi-mode resonator and lambda/4 resonators with mixed electric and magnetic coupling," IEEE Microwave and Wireless Components Letters, Vol. 26, 343-345, 2016.
    doi:10.1109/LMWC.2016.2549643